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The present experiment is mainly divided in two parts. At first we want to characterise the modes
of a reflex klystron, record the characteristic curve of the detector diode and measure the standing
wave ratio for different experimental adaptations. Second we calibrate the magnetic field of the
experimental implementation of the electron spin resonance (ESR). Thereafter we investigate the
ESR spectrum of different probes and the hyperfine structure of Mn2+ and DPPH. Especially we
want to determine the Landé g-factors of Cu2+ and Mn2+ and analyse the spin-exchange in TEMPO
solutions.

BASICS

To understand why we need microwaves in this exper-
iment let us look at the level splitting of an electron.
The splitting energy is given by ∆E = geµBBres and is
equivalent to the applied electromagnetic wave hν. It
follows that ν = geµBBres/h which is roughly 9 GHz for
reasonable fields of about 300 mT.

Microwaves

Electromagnetic waves in the range from 1 GHz to
300 GHz (corresponding to a wavelength of 30 cm to 1 mm)
are called microwaves. In everyday life microwaves are
present in mobile communication such as WiFi, operating
at 2.4 GHz and 5 GHz (since 2013), and radar engineering.
Before we discuss the generation of microwaves we repeat
some basics of electrodynamics to better understand prop-
agation and refraction of microwaves.

Maxwell’s Equations

To describe electromagnetic waves in vacuum it is nec-
essary to know the fundamental equations of electrody-
namics

∇ ·B = 0 (1)

∇ ·E =
%

ε0
(2)

∇×E = −∂tB (3)

∇×B = µ0j + µ0ε0∂tE (4)

the Maxwell equations. Here B (E) is the magnetic
(electric) field, % the charge density, j the current density,
ε0 the permittivity of free space, and µ0 the permeability
of free space. Equation (1) allows to find a vector potential
A that fulfils B = ∇×A (see vector calculus). With help
of equation (3) and the vector potential we can ensure the
existence of a scalar potential φ with −∇φ = E + ∂tA.

With help of the Lorenz gauge condition

∇ ·A− ε0µ0∂tφ = 0 (5)

and the help of equation (4) it is possible to identify wave
equations for the potentials(

∆− 1

c2
∂2
t

)
φ =

√
µ0

ε0
%, (6)(

∆− 1

c2
∂2
t

)
A = µ0j. (7)

Using the D’Alembert operator and the covariant for-
mulation of electrodynamics allows to find a much more
beautiful form of Maxwell’s equations, namely

∂µ∂
µAν = µ0j

ν , (8)

where Aµ = (φ/c,A) and jµ = (c%, j) are four-vectors.
It is an easy exercise to determine the wave equation

for E in vacuum

�E = 0. (9)

The solution for electric waves in vacuum are plane waves

E(r, t) = E0ei(k·r−ωt) (10)

with der dispersion relation ω = c|k|. If we want to solve
Maxwell’s equation in waveguides we have to observe
additional boundary conditions.

Generation of Microwaves

To generate electromagnetic waves of any kind in a
controlled way a cavity is needed. A cavity has the advan-
tage that we can precisely control which modes of a wave
we get. Furthermore, a switch between continuous wave
and pulsed wave can be achieved using a cavity. Here
we will only use continuous wave, though. There a two
kinds of cavities for the generation of microwaves which
are presented in the following: The two chamber klystron
and the reflex klystron.
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FIG. 1. (a) Sketch of a two chamber klystron, taken from [1,
p. 479]. Electrons are generated at the cathode K and accel-
erated by a positively charged slit. The resonator H1 applies
a velocity modulation, resonator H2 a density modulation.
The backcoupling of both allows usage as cavity. (b) Sketch
of a reflex klystron, also taken from [1, p. 479]. Electrons
are again generated at the cathode K and accelerated by a
slit but then reflected by the repeller R. This results in a
reversal of the direction of flight and, if the repeller voltage
was chosen appropriately, in a resonant mode in the cavity. In
this experiment we use a reflex klystron.

Two Chamber Klystron: A sketch of a two chamber
klystron can be viewed in figure 1 a). A hot cathode emits
electrons that are accelerated by a positively charged slit
to energies in the range of several keV. The electron beam
enters the first chamber H1. The electric field present in
H1 accelerated or slows down the electrons depending on
their velocity. This velocity modulation leads to formation
of clusters with electrons of the same speed, which can be
viewed as a density modulation. The second chamber is
placed at the maximum of the density amplitude where
this oscillation produces a voltage in the walls of the

chamber with the same frequency as the mode in the first
chamber. The frequency depends on the geometry of the
resonator and can thus not be influenced easily.

Reflex Klystron: A sketch of a reflex klystron is de-
picted in figure 1 b). A reflex klystron only consists of
one resonator. Instead of the second resonator there is a
reflector electrode, which is negatively charged. During
the slowing down and accelerating in the opposite direc-
tion a density modulation emerges. During the second
pass through the resonator the electrons exchange energy
with the resonator mode. Only if the electrons have the
correct velocity on reentering of the cavity (determined
by UR) they provide energy to the field by slowing down,
else they absorb energy from the field to accelerate.

Microwaves in waveguides

Every linear structure that conveys electromagnetic
waves is called waveguide. The waveguides used in the
experiment are hollow metal pipes. With the help of
Maxwell’s equations and boundary conditions determined
by the properties of the materials it is possible to analyse
the behaviour of microwaves in waveguides and identify
the possible modes. Henceforth the waveguide is assumed
to be aligned in z-direction. Electromagnetic waves prop-
agating in waveguides are reflected on the walls and form
standing waves leading to a discrete spectrum of allowed
modes.

To identify the possible modes it is necessary to solve
the wave equation (9). Due to the alignment of the
waveguide we use the ansatz

E(r, t) = E0(x, y) cos(ωt− kzz) (11)

which yields

∂2
xE + ∂2

yE +
( ω
c2
− k2

z

)
E = 0. (12)

The boundary conditions in waveguides demand a vanish-
ing tangential component ofE on the walls (von Neumann
condition). This implies that the electric field E is always
perpendicular to the magnetic field B which is there-
fore orientated tangentially to the conductive walls. This
conditions are fulfilled if

kx =
πn

a
, ky =

πm

b
(13)

and n,m ∈ N. The constants a and b describe the width
and height of the waveguide. Using Maxwell’s equations
we identify:

TE-Modes: Solutions that have no electric field in the
direction of propagation (E ⊥ ez) are called transverse
electric modes.

TM-Modes: Solutions that have no magnetic field in
the direction of propagation (B ⊥ ez) are called trans-
verse magnetic modes.
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TEM-Modes: Transverse electromagnetic modes have
neither an electric field nor a magnetic field component in
the direction of propagation. Due to Maxwell’s equations
these solutions are not possible in hollow waveguides.
However TEM-modes can propagate in coaxial cables or
free space.

To investigate the dispersion in hollow waveguides we
use ω = ck and the conditions (13)

kz =

√
ω2

c2
− π

(
n2

a2
+
m2

b2

)
=
√
k2 − k2

g . (14)

An undamped propagation in z-direction is only possible
if the threshold wavelength λg = 2π/kg is greater than
the wavelength of the electromagnetic wave λ or kg ≥ k.
The threshold wavelength is therefore given by

λg = 2

(
n2

a2
+
m2

b2

)−1/2

. (15)

To compare the vacuum wavelength λv = c/ν with λg
it is common to define an effective wavelength

λe ≡
2π

kz
= λv

(
1− λ2

v

λ2
g

)−1/2

. (16)

Obviously the wavelength of electromagnetic waves in
hollow waveguides is greater than the wavelength of an
electromagnetic waves of the same frequency in vacuum.

Standing Waves: A standing wave is caused by the in-
terference of two waves propagating in opposite directions
(e.g. interference between an incoming and a reflected
wave). The two waves are described by

Ei(r, t) = E0 cos(ωt− kz) (17)

Er(r, t) = E0 cos(ωt+ kz). (18)

The interference of both waves is

E(r, t) = Ei(r, t) +Er(r, t)

= 2E0 sin(kz) cos(ωt) (19)

where we used some trigonometric identities. This func-
tion of a standing wave is characterised by its nodes and
antinodes. The gifted reader might have noticed that for
standing waves it is not possible to transport energy and
therefore they are impractical for our experiment.

Reflection of Waves

When a wave hits the end of a waveguide, whatever
boundary condition applies, it is reflected. This is not a
hard reflection where 100 % of the wave are scattered back-
wards, but a transition from a regime of a first impedance

Z1 into a regime of another impedance Z2. In general the
impedance depends on the position inside the waveguide,
i.e., Z = Z(r). For the vacuum we find Zvac =

√
µ0/ε0.

For the transition Z1 → Z2 we find the reflection coeffi-
cient

p =
E(r)

E(i)
=
Z2 − Z1

Z2 + Z1

The indices (r) und (i) stand for für reflected and incident,
respectively. The reflection coefficient is p = 0 if Z2 = Z1.
Therefore open end waveguides are capped by a terminal
resistance. To keep the reflection factor small one tries
to smoothly transfer waves from one guide to another, in
the case of microwaves using so called horn radiators.

Reflected waves inside a waveguide lead to (undesired)
standing waves, as discussed above. Those standing waves
are in most cases not completely stationary, but are su-
perimposed with propagating parts. To quantify the
amount of superposition one defines the standing wave ra-
tio (SWR) as the ratio of maximum and minimum electric
field amplitude

SWR ≡ Emax

Emin
=
|E(i)

1 |+ |E
(r)
1 |

|E(i)
1 | − |E

(r)
1 |

=
1 + |p|
1− |p|

(20)

with the just introduced reflection coefficient p. There are
two limit cases worth mentioning: SWR = 1 ⇐⇒ |p| = 0
corresponds to an ideal setup as there is no reflection
at all, whereas SWR = ∞ ⇐⇒ |p| = 1 resembles the
worst case of total reflection, i.e. standing waves inside
the waveguide.

Determining the SWR

There are three different techniques to determine the
SWR in a hollow waveguide, which are all presented in
the following. All of the are based on the insertion of a
probe into the waveguide.

Interlude on Damping: To quantify ratios using the
Decibel scale one computes the logarithm of the ratio
to base ten and multiplies the result with ten. Hence,
10 dB corresponds to a tenfold increase, whereas 3 dB
approximately describes a doubling and 3 dB a halving.
Formally one has

L(E1, E2) = 10 log10

(
E2

1

E2
2

)
dB

= 20 log10

(
E1

E2

)
dB

= 2 log10

(
E1

E2

)
B

Because the damping takes place over the whole extent of
the waveguide, it is common to put it in relation to that.
In most cases this is dB/10 m or dB/100 m.
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The SWR metre method: This method is reliable for
small to medium SWR. The procedure is as follows:

1. We insert the probe into the waveguide and move
it to the location of maximum amplitude (if there
is none, we immediately conclude SWR = 1).

2. We note down the damping shown on the SWR

metre as Lmax.

3. The probe is moved towards the amplitude mini-
mum.

4. We note down the damping shown on the SWR

metre as Lmin.

5. The SWR can be calculated by the formula

SWR =
Emax

Emin
= 10

Lmin−Lmax
20 dB (21)

The 3 dB method: In contrast to the SWR metre
method we can measure large SWR with this method.

1. We insert the probe into the waveguide and move
it to the location of minimum amplitude (if there is
none, we immediately conclude SWR = 1).

2. We note down the damping shown on the SWR

metre as Lmin.

3. The probe is moved to the left and to the right,
successively, to a damping of L = Lmin − 3 dB.

4. We note down the positions of the probe as dl and
dr.

5. We determine the wavelength λg in the waveguide
by, e.g. taking the distance of two minima.

6. The SWR can be calculated by the formula

SWR =

√√√√1 +
1

sin2
(
π(dl−dr)

λg

) ≈ λg
π(dl − dr)

(22)

The attenuator method: Because we use this method
to measure really large SWR we need to plug an attenua-
tor between the klystron and the measurement diode to
prevent an overload.

1. We insert the probe into the waveguide and move
it to the location of minimum amplitude (if there is
none, we immediately conclude SWR = 1).

2. The attenuator is set to Lmin = 20 dB, the amplifi-
cation of the SWR metre is set, such that it shows
a damping of 3 dB.

3. Now we move the probe towards a (relative) max-
imum amplitude, while making sure to adjust the
attenuator in such a way that we do not cause an
overload.

4. The attenuator is set to a value Lmax, such that the
SWR metre shows a damping of 3 dB (as before).

5. The SWR can be calculated by the formula

SWR = 10
Lmax−Lmin

20 dB (23)

Electron Spin Resonance

Electron spin resonance (ESR) is a phenomenon similar
to nuclear magnetic resonance (NMR). It is based on
transitions between adjacent levels of electrons in an
external magnetic field. These transitions can be induced
by stimulation with microwaves and thus give rise to
characteristic resonance spectra.

Electron and Spin

Electrons have a property called spin that make them
able to interact with a magnetic field. The spin can be
motivated by quantum field theories. Namely, the Dirac
equations has two solutions of positive energy and two
of negative energy. This twofold characteristic is then
defined to be the spin. Nevertheless, the spin was discov-
ered long before it was postulated, by the Stern-Gerlach
experiments. Nowadays the standard model assigns a spin
of S = 1/2 to the electron, because it is a fermion (like
all hadrons). The spin can be connected to a magnetic
moment

µ = γS (24)

where γ is the gyromagnetic ratio, which can be expressed
in terms of the Landé-g-factor (see below)

γ = g
µB
~

(25)

where µB is the Bohr magneton and ~ the Planck constant.
The quantum mechanics of angular momenta states

the commutation relation [Si, Sj ] = iεijkSk for a vector
operator S. The eigenstates are given in terms of two
quantum numbers s and ms.

S2 |s,ms〉 = ~2 s(s+ 1) |s,ms〉
Sz |s,ms〉 = ~ms |s,ms〉

where ms ∈ {−s, . . . , s}. Now the spin is fully described
by its z component Sz and its modulus squared S2. This
allows for a representation in the vector model, c.f. figure 2
(b).

Interaction with the Electromagnetic Field

With the knowledge of the previous section we obtain
for the magnetic moment

µ = |µ| = γ|S| =
√
s(s+ 1)µBge (26)
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FIG. 2. (a) Energy levels of an electron in absence and presence
of a magnetic field B. The two possible spin states ms = ±1/2
lose their degeneracy in presence of an external magnetic field.
(b) Vector representation of the electron spin. The z axis is
chosen as the quantisation axis.

In presence of the magnetic field B0 there are only two
possible configurations ms = ±1/2 (magnetic spin quan-
tum number) of the electron. Due to the Zeeman ef-
fect (figure 2) each configuration has the specific energy
E = msgeµBB0. The energy difference is therefore

∆E = hν = geµBB0. (27)

Equation (27) is also called the fundamental equation of
electron spin resonance because if an electromagnetic wave
with frequency ν is coupled perpendicular to the direction
of B0 it is possible to observe a transition between the
two configurations of the electron spin. This is called
electron spin resonance (ESR).

Note that the electron spin resonance is only possible
for samples with permanent dipole moment (so called
paramagnetic sample).

We now study the interaction of a spin with a time
dependent magentic field, such as a microwave. The
interaction term of such a Hamiltonian is given by

H = −µ ·B (28)

Let now B(t) = (B cosωt, 0, 0). It follows

H = −gµB
~
SxB cosωt (29)

Using time dependent perturbation theory and Sx =
(S+ + S−)/2 we find

Pi→f ∼ |〈f |V |i〉|2 ∼ |〈f |S+|i〉+ 〈f |S−|i〉|2 (30)

which means that the probability for transitions |↑〉 → |↓〉
and |↓〉 → |↑〉 is non-zero. These processes are called
stimulated emission and stimulated absorption.

In the vector model the spin can be treated like a
classical angular momentum. A torque T towards the
magnetic moment leads to the angular momentum S to

precess around the axis defined by the magnetic field at
the Larmor frequency ωL.

ωL =
gµB
|S|

B = γB

When a magnetic field is applied it takes some time for
the system to reach the equilibrium state of magneti-
sation M0. The process of approaching this state can
be described by a differential equation with the longi-
tudinal relaxation time T1. Because the spin exchanges
energy with its surroundings (called lattice), this one is
called spin-lattice-relaxation time. There also exists a
transversal magnetisation Mx and My, which depend on
the transversal relaxation time T2 (spin-spin relaxation
time).

If now a magnetic field is applied, which operates near
the Larmor frequency, we get the so called Bloch equations
in the rotating frame.

d

dt
M∗x = (γB0 − ω)M∗y −

M∗x
T2

(31a)

d

dt
M∗y = −(γB0 − ω)M∗x − γB1M

∗
z −

M∗y
T2

(31b)

d

dt
M∗z = −γB1M

∗
y −

M∗z −M0

T1
(31c)

The terms containing the times T1 and T2 describes the
relaxation process, while the terms containing B0 describe
a precession around the magnetisation M∗ and the terms
with B1 reflect a movement around the x∗-axis.

A homogeneous static magnetic field B0 = B0 ez is
applied in z direction. The nuclear spin now precesses
around this field. Now a high frequency magnetic pulse
BHF is put on, perpendicular to B0, the magnetisation is
deflected towards the field resulting from a superposition
of B0 and BHF.

After this pulse the magnetisation returns to equilib-
rium as described by the Bloch equations (31,a–c). In the
time, when the spin magnetic moment does not precess
around B0, an oscillating magnetic field is applied.

The oscillating field is applied in two modes:

• 90°-pulses last the time tW , which exactly deflects
the spin from its idle state to the x, y-plane.

• 180°-pulses last for 2tW and invert the spins.

The time between two pulses is τ .
After the 90°-pulse is put in some spins precess faster

than others due to inhomogeneities in the field B0 and
the various magnetic surrounding in the sample itself.
Because of the precessions drifting apart we obtain a
decaying signal, called FID-Signal (free induction decay).
After 2τ a spin echo can be measured because when
inverting the spins the precessions start to approach again
and when they meet the resonance signal is at a maximum,
due to all spins being in phase.
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The Landé g-factor

In general the Landé g-factor isn’t a simple scalar.
This is only true for free electrons. Because the g-factor
is anisotropic in many crystals it is necessary to introduce
a symmetric Tensor g which is diagonalisable and has the
form

g =

gxx 0 0
0 gyy 0
0 0 gzz

 . (32)

The directions parallel to the eigenvectors of the eigenbasis
are called principal axes.

In many physical problems the g Tensor has an addi-
tional symmetry that allows gxx = gyy. Consequently we
are able to define two further quantities

g‖ ≡ gzz, (33)

g⊥ ≡ gxx = gyy, (34)

that we have to determine in the experiment.

Let ez be the principal axis to g‖ of a crystal with
axial symmetry to ex and ey. The magnetic field B0 can
be described with spherical coordinates θ and ϕ. With
respect to the additional symmetry gxx = gyy we can
rewrite the Landé g-factor

g(θ, ϕ) =
√
g⊥ sin2 θ + g‖ cos2 θ. (35)

In the case of ez ‖ B0 the angle θ = 0 and g = g‖.
Rotating the sample to ez ⊥ B0, which implies θ = π/2,
allows to measure g = g⊥.

Hyperfine Structure

The hyperfine structure of an ESR spectrum, caused
by the magnetic interaction of the momenta of neigh-
bouring electrons and nuclei, describes a splitting of ESR

resonances of active electrons in multiple lines. The Hamil-
tonian is than given by

H = HZ +HHFS

= −ge
~
µB

B0 · Sz + SAI, (36)

where HZ is the Zeeman interaction and A the hyperfine
structure tensor. Note that the Hamiltonian (36) only
covers the interaction between one electron and one nu-
cleus. To describe the interaction between more electrons
and nuclei it is necessary to add some more terms. Only
for non-vanishing nuclear spin I the observation of hyper-
fine splitting in ESR spectra is possible. More precisely

HHFS is given by

HHFS = HDipole +HIso

= −µ0geµBgIµI
3π~

[[
2(Sr)(rI)

|r|5
− Sr

|r|3

]
+

8πδ(r)

3
SI

]
,

(37)

where terms subscripted with I belong to the nucleus.
Dipole Interaction: HHFS describes the dipole inter-

action which depends on the relative orientation of the
vector r between electron, nucleus and the external mag-
netic field B0. This ansiotropy results in a hyperfine
splitting depending on the orientation of the sample in
the magnetic field.

Fermi Contact Interaction: HIso describes the fermi
contact interaction which is the magnetic interaction be-
tween an electron and an atomic nucleus where the elec-
tron is assumed to be at the position of the nucleus. This
interaction is independent of the orientation of the sample
in a magnetic field. Therefore this interaction is respon-
sible for the hyperfine splitting in liquid samples. The
spin density is then given by |ψ(0)|2, where ψ(0) is the
electron wavefunction at the position of the nucleus.

Spin Exchange

In liquid ESR samples spin exchange describes a spin
diffusion between paramagnetic molecules. It is caused
by spin-spin interaction of two ESR active electrons of
different molecules. This interaction appears when the
orbitals of both electrons overlap. In fluids this is the case
for collisions of paramagnetic molecules. The Hamiltonian
is then given by

HSS = ~J(r)S1S2, (38)

where J(r) is the exchange integral. The eigenstates of
the Hamiltonian are given by the singlet and the three
triplet states. It is an easy task to determine these with
the help of the angular momentum algebra. Indeed, the
molecules of the fluid are not in entangled states, but in
product states |↑↑〉, |↓↓〉, etc. The two states of parallel
spin are eigenstates of the aforementioned Hamiltonian.
During a collision there might be a spin flip. This process
is given by

A(↑) +B(↓) 
 A(↓) +B(↑). (39)

The reaction rate is then given by ωe = kecAcB, where
cA and cB are the concentrations of species A and B,
and ke is a rate constant. ke gives information about the
quantum mechanical part of the spin exchange

ke = pkD. (40)

Here p is the mean efficiency of a collision, and kD the
diffusion coefficient. Note that p depends on the exchange
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integral J and the mean collision time τc. From non-
hermitian quantum mechanics (NHQM) it can be derived
that the line width of a resonance it proportional to the
life time of the corresponding state and hence depends
on the kind of spin exchange.

Slow Spin Exchange: For slow spin exchange the reso-
nance becomes wider and position shifted.

Moderate Spin Exchange: For moderate spin exchange
the resonances become one unified resonance.

Fast Spin Exchange: For fast spin exchange the width
of the unified resonances become narrower.

If there are more resonances in the measured data it is
necessary to use a multiple Lorentz-fit

L(ω) =
∆ω2

ωe

I

ω2 + (ω2−∆ω2/4)2

ω2
e

, (41)

where ω is the microwave frequency, ω = kec the exchange
rate and ∆ω the distance of the lines if the spectrum only
consists of two lines. In the regime of slow spin exchange
it is possible to identify a linear dependency between the
FWHM ∆B of the resonances and the concentration

∆B(c)−∆B(c = 0) ∝ kec. (42)

An explicit result is given by

kec =
geµB
~

∣∣∣∣ 1

1− ϕ

∣∣∣∣ (∆B(c)−∆B(c = 0)), (43)

where ϕ is the statistical measure of the investigated
resonance. The statistical measure ϕ is given by the ratio
between the number of mI configurations of the observed
resonance and the number of all possible configurations.

Spectral Lines

Resonance lines in spectra should in theory be perfect
delta peaks, but due to the inevitable interaction with
the environment the lines get broadened. This leads to
a very important property of spectral lines viz. the line
width. In our experiment the absorption curves can be
approximated by a Lorentzian

L(B) =
I

1 +
(

2
∆B (B −Bres)

)2 (44)

with the intensity I, the centre Bres and the “full width
at half maximum” or FWHM ∆B.

Because the ESR spectra are recorded using effect mod-
ulation of the magnetic field we always measure the deriva-
tive of the signal, hence our spectral lines will have the
form of a differential Lorentzian.

FIG. 3. The intensity amplitude ∆I is ejected by the lock-in
amplifier. The measured signal is proportional to the derivative
of the absorption curve. Taken from [2].

Experimental Requirements

To measure electron spin resonance certain prerequisites
have to be fulfilled and certain devices and techniques are
needed. The technique of effect modulation is explained
in the following because it is a crucial part for reliably
measuring ESR. Also the working principle of a lock-in
amplifier is explained. It is needed because the measured
signal in the cavity is very noisy and a lock-in amplifier
offers methods to smooth it.

Effect Modulation

Due to the bad signal-to-noise ratio a direct measure-
ment of attenuation of microwaves is not possible. To
solve this problem we use a technique called effect modu-
lation. With help of a lock-in amplifier an enhancement
of the measured signals are possible.

To do so it is necessary to use additional modulation
coils in the resonator with a typical frequency component
of 100 kHz. A previous magnetic field in z-direction is

7
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then modified such that it is given by

B(t) = Bstat + ∆B

(
t

t0
− 1

2

)
+

1

2
Bm sin(ωmt), (45)

where ωm is the modulation frequency which is much
faster than the linear change of the magnetic field, Bm
the modulation amplitude which is small compared to the
width of the resonance and ∆B is the measured timeframe,
c.f. figure 3. The figure shows that the modulation of the
magnetic field also causes a modulation of the absorbed
microwave power. Disorders caused by other sources than
the ESR absorption of the microwave are not modulated.
It is also depicted that the issued voltage of the lock-in
amplifier is proportional to the derivative of the absorption
curve. The absorption curve is a result of numerical or
electronic integration.

Lock-In Amplifier

A lock-in amplifier is a technical device used to detect
and measure small AC signals down to a few nanovolts.
With their help it is possible to extract signals with known
carrier waves from noisy environments. Therefore they
use a technique known as phase-sensitive detection.

An common lock-in amplifier amplifies and then multi-
plies the incoming signal

Usig = Usig,0 sin(ωsigt+ θsig) (46)

from an experiment (e.g. an oscillator) with a lock-in
reference

Uref = Uref,0 sin(ωreft+ θref), (47)

where Usig,0 is the signal amplitude. Note that the refer-
ence signal in the experiment is the signal of the magnetic
field modulation and the incoming signal is the measured
microwave power excited from the magnetic field modula-
tion. Multiplying both signals yield

UM = Usig,0Uref,0 sin(ωsigt+ θsig) sin(ωreft+ θref).

With the help of some trigonometrical identities we can
rewrite the signal

UM =
1

2

[
Ũ cos((ωsig − ωref)t+ θsig − θref)

− Ũ cos((ωsig + ωref)t+ θsig + θref)
]
, (48)

where Ũ = Usig,0Usig,0. The signal UM is passed through
a low pass filter which only let a signal pass if ωsig = ωref ,
i.e. , the filtered output will be a very nice DC signal

UOut =
1

2
Ũ cos(θsig − θref). (49)

To maximise the output signal UOut the condition (θsig −
θref = 2πn and n ∈ N has to be fulfilled. This can be
achieved with a manual phase shifting device or using
a second lock-in amplifier with an π/2 phase shifted fix
reference signal. Unfortunately in the experimental set-up
only a manual phase shifting device is possible.

ANALYSIS

Experiments on ESR I

In this section we deal with experiments which are
needed in preparation for actual ESR spectra. Important
quantities to determine are the Q-factors of our samples.
This can be done without any magnetic field. As all subse-
quent measurements depend on a magnetic field, which is
adjusted via its Hall voltage, we need to calibrate the Hall
probe using the well gauged DPPH. Next a set of optimal
system parameters is to be found, such that the quality
of ESR spectra is maximised with respect to power of
the microwave radiation, as well as modulation frequency,
Hall voltage, and amplitude of the magnetic field, and
ultimately delay time of the lock-in amplifier. Afterwards
the first ESR spectra are recorded to analyse the hyperfine
structure in DPPH depending on the concentration, and
compute the g-Tensor of CuSO4 and Mn2+.

Experimental Setup

As described in the basics, the experimental setup needs
to incorporate several devices for different purposes. First
of all we need a reflex klystron to generate microwaves.
Then we need an adjustable damping unit and a magical
T for backcoupling to the klystron. Finally we have
Helmholtz coils.

Each of these devices fulfils a certain purpose. The
klystron for instance does not only generate microwaves
in an unspecified way, but it uses the signal detected
by a diode somewhere else in the circuit to adjust its
frequency. The adjustable damping unit is needed because
we don’t want to record all signals at the same intensity.
Some samples need to experience some more power, some
need less. The magical T is used to distribute the signal
coming from the klystron back to the diode associated
with the klystron and to the magnetic field coils. Inside
the Helmholtz coils the magnetic field is generated which
will lift the degeneracy of the initially degenerate ms

states by means of a Zeeman interaction.
In one of the upcoming sections we’re going to investi-

gate the dependency of the ESR spectra on several system
parameters. These include:

• The modulation frequency and amplitude of the
magentic field which can both be adjusted at the
power supply of the Helmholtz coils.

8
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FIG. 4. Photo of the experimental setup. Not all components
are visible in the picture. The black can on the far left are the
Helmholtz coils for the magnetic field. A little right to it we
see the magical T. In the middle is the adjustable damping
module and on the far left the klystron. The whole setup was
much larger and included all sorts of measurement devices and
power sources—these are not illustrated.

• The microwave power can be adjusted using the
aforementioned damping unit.

• The integration time of the signal can be selected
on the lock-in amplifier.

Another free parameter was the magentic field sweep
which was selected on the computer interface, but this
had no effect on the actual outcome of the measurement.

Quality of the resonator

The quality factor Q of a resonator characterises the
bandwidth relative to its resonance frequency and thus is
a dimensionless quantity. We use the definition

Q ≡ ν0

∆ν
, (50)

where ν0 is the resonance frequency and ∆ν the bandwidth
(FWHM). The higher the Q-factor, the lower are the
dissipative losses in the resonator. The investigation of
the different samples with ESR extract energy from the
modes in the resonator and will lead to a decreasing
quality factor.

In the following subsection we want to determine the
Q-factor for an empty resonator and filled resonator with
the samples DPPH (poly), CuSO4 (poly) and Mn2+ (aq).
To do so, it is necessary to adjust the klystron frequency
by modifying the resonator geometry. The goal of this
adjustment is to shift the absorption dip of the resonator
to the most powerful klystron mode. For this purpose we
use an oscilloscope. With help of an additional measure-
ment resonator it is possible to detect the resonator mode.
With help of a micrometre we can adjust the position of

TABLE I. Resonator quality Q = ν0/∆ν for different samples.
The peak frequency is labelled with ν0 and the width (FWHM)
with ∆ν. The Position was measured with an micrometer.
The positions left and right of the resonance dip are labelled
with xl and xr.

xl x0 xr ν0 ∆ν Q
Sample [mm] [mm] [mm] [GHz] [kHz] [1]

empty 7.808 7.832 7.848 9.518 5.363 1775
DPPH 7.868 7.888 7.908 9.511 5.326 1786
CuSO4 7.876 7.896 7.920 9.510 5.852 1625
Mn2+ 7.808 7.832 7.852 9.518 5.898 1614

the resonance frequency (minimum) x0 and the left xl
and right xr position at half maximum. With help of the
calibration curve

ν(x)

GHz
= 11.045− 0.255 89 · x

mm
+ 0.007 78 ·

( x

mm

)2

(51)

we can match every measured position to a frequency.
To determine the bandwidth we use the formula ∆ν =
|ν(xl)− ν(xr)|. With equation (50) it is possible to find
the Q-factors for each sample. Thereto see table I.

As predicted the Q-factors of the particular samples
are smaller than the Q-factor of the empty resonator.
We should emphasise that the absorption dip looks a bit
asymmetric, despite adjusting the set-up. This can be
seen in the distance of the resonance position x0 and the
bandwidth positions xl/r in table I.

Calibration of the Hall probe

Before any productive measurements can be performed
we need to gauge the Hall probe of the magnetic field.
We have to do this, because we vary the magnetic field by
ramping the Hall voltage on the computer. At first the
value of the Hall voltage and the actual value of the mag-
netic field are not related in an explicit quantitative way.
To determine an isomorphism between the two mentioned
quantities we record an ESR spectrum of the DPPH and
fit its shape to a differential Lorentzian to obtain the
maximum of the resonance (root of the fitted function).
This will give us an estimate for the magnetic field as all
microscopic quantities of DPPH have been studied thor-
oughly in previous experiments. The important property
here is the Landé-g-factor which was found to be [3]

gDPPH = 2.0036 . (52)

9
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FIG. 5. First Measurement of the DPPH (poly) sample. This
resonance spectrum gives use the magnetic field calibration
for the following measurements.

The structure formula of 2,2-Diphenyl-1-Picrylhydrazyl
(DPPH) reads

N N

NO2

NO2

NO2

(53)

The main feature of DPPH is its stable free electron at
the nitrogen atom, marked with a dot in the formula.
This free electron is responsible for the ESR signal.

It is well known that there exists a linear dependence
of the magnetic field on the Hall voltage. This propor-
tionality factor is given by (27) and it follows

B(UH) =
hν0

gDPPHµB
· UH
UDPPH

(54)

with Planck’s constant h, the Bohr magneton µB and
the already mentioned Landé-g-factor gDPPH. The quan-
tities UDPPH and ν0 have to be determined from the
measurement. The resonance frequency ν0 can be found
in table I and is ν0 = 9.511 GHz. From the fitted differ-
ential Lorentzian in figure 5 we find the maximum of the
resonance, i.e., the root of the fit, at UDPPH = 135.13 mV.

Plugging in these values yields

B(UH) = 2.5099 · UH . (55)

In all figures the magnetic field is assigned to the lower
x-axis and for reference the corresponding Hall voltage
is always shown on the upper x-axis. In principle, the
DPPH peak drifts during subsequent measurements due to
thermal changes in the Hall probe. We didn’t experience

this effect to have much influence and thus kept the
existing calibration throughout all measurements.

Above we stated that we have obtained the value for
the maximum of the resonance at UDPPH = 135.13 mV
by finding the root of a differential Lorentzian fitted to
the data. Here we present the ansatz function

F =
dL
dB

= − 8I

(∆B)2

B −Bres[
1 +

(
2

∆B (B −Bres)
)2]2 . (56)

The fitting routine of the gnuplot utility provides the
following values: I = −3.2424 a.u., ∆B = 0.3029 mV,
and Bres = 135.13 mV. After mapping these quanti-
ties using the conversion found above one has: ∆B =
0.760 18 mV, and Bres = 339.158 mV. We can compare
Bres = 339.158 mV to the analytical value described above
BDPPH = hν0

gDPPHµB
≈ 339.159 mT.

Dependency of the spectra on different system parameters

To find a set of optimal system parameters it is useful
to analyse the signal strength and its shape by varying:

• the modulation frequency, see figure 6,

• the integration time, see figure 7,

• the modulation amplitude, see figure 8,

• the power of the microwave, see figure 9.

From these figures we seek to find optimal parameters for
further experiments. We will now discuss the results:

Modulation Frequency: All in all, five spectra for dif-
ferent modulation frequencies of the magnetic field were
recorded in the range 2 kHz to 10 kHz. The measurement
for 10 kHz was discarded, though, because the signal am-
plitude fell below any comparable order of magnitude and
was only visible as a flat line in the comparative plot in
figure 6.

In the figure the peaks were all slightly shifted to the
right, thus the root of the curves does not correspond
to the actual position of the resonance which is still at
339 mT.

The signal’s amplitude decreases with increasing mod-
ulation frequency, whereas the curves becomes deformed
for a frequency of 2 kHz. Nevertheless we will choose fre-
quencies from the low regime for further measurement as
these produce much stronger signals. For low frequency
signals we observe a more visible scattering of data points
around the spline.

We can say that for higher frequencies we obtain a
smoother but weaker signal while for lower frequencies
we obtain slightly noisy but more intense signals. Most
of the spectra were recorded between 1 kHz and 2 kHz.

10
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FIG. 6. Spectra of DPPH for different modulation frequencies
ν. The amplitude of the signal decreases with increasing
frequency due to the increasing inductive reactance XL = ωL
of the modulation coil. For better visibility the curves are
overlayed with cubic splines and shifted in x-direction.

As an explanation for the drastic signal decay for high
modulation frequencies we calculate the inductive resis-
tance of the Helmholtz coils. This is given by

XL = ωL (57)

and depends on the modulation frequency ωm. The mag-
netic field is determined by the current through the coils
which is given by I = U/XL ∼ 1/ωm. This illustrates the
inverse dependence and explains the decay which is then
proportional to ν−1.

Integration Time: Several spectra of DPPH (poly)
were recorded for different integration times of the lock-in
amplifier. They are depicted in figure 7.

As above the curves were shifted in x-direction for
better comparability. In a range from 1 ms to 100 ms the
strength and shape of the signal are not affected by a
change of τ . Above the signal strength decreases and
for τ = 10 000 ms the shape is extremely deformed. The
descending edge is damped more than the ascending side
and is smeared out.

The deformation of the signal can be explained eas-
ily. On the computer the delay between two consecutive
changes of the Hall voltage was set to 50 ms and wasn’t
altered throughout the whole experiment. If now the
integration time is much larger than the delay between
the Hall voltage changes one peak is averaged out and
its amplitude is distributed to a broader range which is
the mentioned smearing out. Another effect is that the
averaging takes places over a negative and a positive peak
both parts compensate each other and lead to a reduction
of the signal strength.

The previous text might bring over the feeling that
the averaging of the signal is a bad thing and destroys it.
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FIG. 7. Measurements of DPPH for different integration times
τ of the lock-in amplifier. For integration times higher than
100 ms the signal amplitude decreases and an asymmetry of
the curve becomes visible. The data points were overlay with
a cubic spline. To compare the respective curves the spectrum
is shifted in x-direction.
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FIG. 8. Measurements of DPPH for different modulation am-
plitudes U . For amplitudes higher than 400 mV the curves de-
form and become asymmetric. The signal amplitude increases
with increasing modulation amplitude. For better visibility
the curves are overlayed with cubic splines and shifted in
x-direction.

This is not entirely true because if we look at the curve
for τ = 1 ms we can see scattering around the spline. To
suppress this noise we need to average a little and thus
we chose an integration time of τ = 30 ms for most of the
measurements.

Modulation Amplitude: The ESR spectra of DPPH for
different modulation amplitudes from 100 mV to 3200 mV
are depicted in figure 8.

The figure shows that the modulation amplitude influ-
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FIG. 9. Measurements of DPPH for different powers of the
microwave. The higher the damping (in dB), which means with
decreasing microwave power, the weaker the signal amplitude.
The shape of the curve is not affected by varying the power.The
data points were overlay with a cubic spline. To compare the
respective curves the spectrum is shifted in x-direction.

ences the signal amplitude and the signal shape. In the
area 100 mV to 400 mV the geometry of the curve remains
unaffected while the signal amplitude increases. In ranges
above 400 mV the signal amplitude saturates, the signal
shape however becomes broader and asymmetric.

The separation of the two peaks for higher modulation
amplitudes is a result of the vanishing intensity differ-
ence ∆I = (dI/dB)∆B (see lock-in amplifier). Is the
modulation amplitude from the same magnitude as the
bandwidth of the resonance peak it is possible to mea-
sure at Bres −Bm the intensity I = 0 and at Bres +Bm
the intensity I 6= 0 because we are on the resonance,
consequently our peaks disperse.

The aim is to find a maximum modulation amplitude
with minimum deformation of the signal shape. This is
obvious for small modulation amplitudes the case, but
the signal amplitude is still to weak for further measure-
ments. As reasonable compromise we used the modulation
amplitude 1000 mV.

Microwave Power: The DPPH spectra for different
microwave powers in the range 10 dB to 18 dB are depicted
in figure 9.

The figure shows a crucial impact of the microwave
power on the signal amplitude. The higher the damp-
ing, which means a lower microwave power, the weaker
the signal amplitude. Obviously low damping (i.e., high
microwave powers) leads to high amplitudes. The signal
shape is not affected by varying the damping. In sum-
mary it can be stated, that it is advisable to measure at
high powers as long as the spectral lines are not getting
broadened.

It should be noted, that the detector diode is limited,
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FIG. 10. Depicted are ESR spectra for different concentrations
of DPPH in aqueous solution. The higher the concentration
the better visible the hyperfine structure. One can observe
all the five expected lines. For the highly dilute solution the
signal is heavily distorted due to the lock-in amplifier, thus
the function overlayed is only a “model” fit.

i.e., there is a technical limit to the microwave power,
otherwise a destruction of the diode is possible.

Hyperfine structure of DPPH

In the previous measurements we have been studying
polycristalline DPPH. This is handy to study all the
properties found above, but to describe paramagnetic
contributions to the spin diffusion the molecules need to
have the ability to rotate in arbitrary directions. Thus, to
observe the hyperfine structure of DPPH we record spec-
tra for different concentrations in aqueous environment.
The various spectra are depicted in figure 10.

For increasingly dilute DPPH solution the adjacent
peaks get more and more accented, but also the signal
strength decreases which is why it has to be amplified
artificially an thus gets deformed. For small dilutions the
neighbouring peaks are heavily damped away.

To determine the interesting parameters such as height,
width and hyperfine splitting of the resonances we fit a su-
perposition of five differential Lorentzians. The functional
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form is given by

F =
dL
dB

= −
5∑
i=1

8Ii
(∆Bi)2

B −Bres,i[
1 +

(
2

∆Bi
(B −Bres,i)

)2
]2 .

(58)
where the parameter for the width is composed of several
components

Bres,i =



Bres + 2A1 for i = 1

Bres +A2 for i = 2

Bres for i = 3

Bres +A4 for i = 4

Bres + 2A5 for i = 5

(59)

This form helps us with the determination of the hyperfine
splitting because these are now parameters of the fit. The
fitted curves are overlayed with the data in figure 10. For
the concentration 1 : 50 a “model” fit was imposed as
one can see the data is not suited for good convergence,
i.e. the fit parameters for this case are educated guesses
based on the assumption that the width of the peaks and
the hyperfine splitting should increase with decreasing
concentration. The values were then augmented from the
other two measurements. The height of the peaks was
drawn by eye.

The values for the fit parameters are listed in table II.
The width of the resonances and the hyperfine splitting
were averaged over all five and four values, respectively.
The approximate ratio of the intensity of the peaks can
also be found there.

For the ratio of the intensities we expect 1 : 2 : 3 : 2 : 1.
This is, unfortunately, in no way met. Because even the
error has a huge scattering this has to be a systematic
error and cannot be explained using a statistical argument.
Even though the ratio is so far off we can still draw
conclusions from it. For example we can definitely factor
out that two resonances have the same height, thus the
electron couples to at least two cores. Also, the fact that
there are five resonances gives us 2(I1 + I2) + 1 = 5,
yielding I1 = I2 = 1. Thus the electron couples to the
nitrogen atoms because these have a nuclear spin of I = 1.

For the value of hyperfine splitting we choose the results
of the fit to the 1 : 10 sample as this possesses the best
ratio of convergence of the fit and spectral line width.
We average over the four values, because the hyperfine
splitting should be equidistant for all reosnances.

ADPPH = 1.720 mT

the hyperfine splitting of DPPH reaches from 1.12 mT to
1.73 mT as reported in [4]. This means that our values
are within the range of possible results.
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FIG. 11. ESR-spectrum of CuSO4 with the two main values
g⊥ and g‖ of the g-Tensor.

g-Tensor of Cu2+

Because of the crystalline structure of CuSO4 the g-
factor for the unpaired electron in Cu2+ is anisotropic. As
discussed in the basics the g-tensor can then be charac-
terised by the eigenvalues g⊥ and g‖. As a consequence we
get an asymmetric broadened absorption spectrum (see
figure 11). In the following discussion we want to deter-
mine g⊥ and p‖ with two methods. At first we present the
method discussed in [5] and then the method discussed
in [6].

Method from [5]: Like in [5] we can determine g⊥ and
g‖ with the help of the peak positions. The calibration
of the magnetic field gives us UDPPH = 135.13 mV and
ν0 = 9.511 GHz. With the well known g-factors of DPPH
we find the connectivity

B(UH) = 2.5099 · UH . (60)

From figure 11 we can read out the magnetic fields to
each peak. With help of the fundamental equation of ESR

we get

B⊥ = 298.929 mT =⇒ g⊥ =
hν

B⊥µB
= 2.27,

B‖ = 325.049 mT =⇒ g‖ =
hν

B‖µB
= 2.09.

The anisotropy of the crystal is characterised by the
different g-values.

Method from [6]: According to the paper we can find
the parameters gα and gγ from a fit to the two partial
peaks in the CuSO4 ·5 H2O ESR profile. To compute the
desired g⊥ and g‖ from those we employ the mapping

g2
α = g2

‖ cos2 ϕ+ g2
⊥ sin2 ϕ

gγ = g⊥
(61)

13



FP V24 (2015) FORTGESCHRITTENENPRAKTIKUM November 10, 2014

TABLE II. Listed below are the parameters of the fit (58) for the various concentrations of DPPH. In the last row of each table
the estimated peak intensity ratio, the mean values of the FWHM, and the hyperfine splitting are presented. The centre of each
resonance is given in the top row.

1 : 0.7 – Bres = 338.96 mT

Ii ∆Bi Ai

[a.u.] [mT] [mT]

1 −0.127 1.291 1.738
2 −0.749 1.757 1.474
3 −6.519 2.381 –
4 −0.472 1.676 1.712
5 −0.073 1.201 1.867

1:6:51:4:1 1.661 1.698

1 : 10 – Bres = 338.95 mT

Ii ∆Bi Ai

[a.u.] [mT] [mT]

1 −0.366 1.461 1.728
2 −1.274 1.526 1.456
3 −5.816 1.794 –
4 −0.884 1.583 1.763
5 −0.288 1.896 1.933

1:3:16:3:1 1.652 1.720

1 : 50 – Bres = 338.20 mT

Ii ∆Bi Ai

[a.u.] [mT] [mT]

1 −0.347 1.512 1.739
2 −1.709 1.319 1.448
3 −7.704 1.590 –
4 −1.397 1.474 1.718
5 −0.447 1.869 1.875

1:5:22:4:1 1.553 1.695

where ϕ = 41° as extracted from table 1 in [6]. According
to (27) we need the magnetic field at the level transition,
which is the zeros of the differential profile (i.e., peaks
of the intensity profile). These can be obtained from a
fit to the two respective peaks and were extracted at the
points Bαres = 302.851 mT and Bγres = 322.947 mT. With
f0 = 9.510 GHz we obtain

gα =
hν0

BαresµB
= 2.24 (62)

gγ =
hµ0

BγresµB
= 2.10 (63)

Now we apply the mapping introduced above (61) to
calculate the g-Tensor:

g⊥ = gγ = 2.10 (64)

gα =

√
g2
α − g2

⊥ sin2 ϕ

cos2 ϕ
= 2.24 (65)

Comparing this to the literature values in table 1 in [6]
ĝ⊥ = 2.05 and ĝ‖ = 2.38 yields the relative deviations
Q(g⊥, ĝ⊥) = 2.4 % and Q(g‖, ĝ‖) = 5.9 %. This is unfor-
tunately not within the error range given in the paper.
This might be due to the fact that we didn’t recalibrate
the magnetic again and the thermal drift kicked in.

ESR analysis of Mn2+

In this section we are going to determine the g-factor
and the hyperfine structure of a liquid Mn2+ solution.
Therefore an ESR spectrum was recorded and is depicted
in figure 12.

For the subsequent calculations we need several pa-
rameters of the resonance spectrum. These include the
peak intensity I, the zero Bres and the width ∆B. For
this specific case we fit a superposition of six differential
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FIG. 12. In the ESR spectrum of Mn2+ the spin exchange
is clearly visible as six distinct resonance peaks. The fitted
function is a sum of six differential Lorentzians.

Lorentzians, given by

F =
dL
dB

= −
6∑
i=1

8Ii
(∆Bi)2

B −Bres,i[
1 +

(
2

∆Bi
(B −Bres,i)

)2
]2 .

(66)
The limit values of the several parameters are listed in
table III.

As described in the previous text we need the resonance
magnetic fields to compute the g-factor. In the formula
of the g-factor there is in fact only one resonance value
of the magnetic field. Thus the resonance value of the
whole spectrum is approximated by the arithmetic mean
over all six resonance values of the zeros (peaks). With
the value from table III and f0 = 9.518 GHz one has

g =
hν0

BresµB
= 2.01 (67)

comparing that with the value found in [7] ĝ = 2.0025
we have a relative deviation of Q(g, ĝ) = 0.4 % which is
really nice.

The hyperfine structure is given by the distance between
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TABLE III. Listed below are the parameters of the fit (66).
The ratio of the respective intensities, the arithmetic mean of
the width, the resonance values, and the hyperfine splitting
are listed in the last row of the table. These are needed for
further calculations.

Ii ∆Bi Bres,i Ai

[a.u.] [mT] [mT] [mT]

1 20.48 7.24 314.94 8.60
2 21.21 7.73 323.54 9.07
3 20.70 7.55 332.61 9.27
4 21.16 7.52 341.88 9.52
5 21.83 7.46 351.40 9.94
6 24.67 8.53 361.34 –

1:1:1:1:1:1 7.67 337.62 9.28

adjacent absorption peaks, i.e., zeros of the differential
absorption. In theory all of those should be the same.
This is obviously not met as can easily be seen from
table III. Thus we present the arithmetic mean of all
those values as our hyperfine structure splitting.

A = 9.28 mT (68)

Here A3 can be compared to the literature value found in
[8, p. 43] Â3 = 8.69 mT which yields a relative deviation
of Q(A3, Â3) = 6.7 %.

Spin Density at the Core

The hyperfine splitting is readily connected with the
Fermi contact interaction. It describes the spin-spin cou-
pling of the electron and the core at the position of the
core. Hence we can calculate the probability of presence
of the electron at the core using the measured values of
the hyperfine splitting of DPPH and Mn2+. The term
spin density is not chosen very wisely in this context as
it does not describe a spacial density of “matter”, but a
probability density of presence of one particle at the core.
This is denoted by |ψ(0)|2. The formula for this quantity
is taken from [9].

|ψ(0)|2 =
3

2

A

µ0gIµK
(69)

with the Landé-factor gI of the core, the core magneton
µK and the magnetic field constant µ0.

With the values from the previous text we can deter-
mine the spin density for DPPH and Mn2+. As a reminder,
the values are

ADPPH = 1.72 mT (70)

AMn2+ = 9.28 mT (71)

Plugging these into the formula for the spin density,
together with the constants gI,DPPH = 0.4038 and

gI,Mn2+ = 1.3819 one has:

|ψDPPH(0)|2 = 1.007 · 1030 m−3, (72)

|ψMn2+(0)|2 = 1.587 · 1030 m−3. (73)

In the case of Mn2+ the paramagnetic electrons are in
the d orbital and hence the presence of the electrons at
the core is zero. Consequently the Fermi contact inter-
action is in this case not possible (only for s electrons).
For electrons in the p, d, f ,. . . -orbitals the dipole-dipole
interaction of the electrons and the nuclear moments is re-
sponsible for the hyperfine splitting and the not vanishing
value of |ψMn2+(0)|2 [9].

Experiments on ESR II

In the present section we seek to study the spin ex-
change in TEMPO and its impact on the form of the
spectral lines in an ESR spectrum. We are going to quan-
tify the spin diffusion by analysing the line widths of the
hyperfine splitting.

The substance in use it TEMPO, which is an acronym
for (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl. The structure
formula reads

CH3

CH3
N

O

CH3

CH3

(74)

The unpaired electron of the oxygen is responsible for
the ESR signal. ESR spectra are recorded for different
concentrations of TEMPO in toluene solution ranging
from 0.25 mmol l−1 to 250 mmol l−1. As O has a nuclear
spin of I = 0 the only coupling for the electron is possibly
to the adjacent N core with nuclear spin I = 1. Thus
2 · 1 + 1 = 3 hyperfine peaks can be observed.

Dependency of the spectra on the TEMPO concentration

Visibility and line width of the hyperfine splitting is
critically dependent on the spin exchange rate, which
in turn is dependent on the concentration of the ESR

active substance. A plot of all measurements for varying
concentration are shown in figure 13 in a waterfall plot. It
is visible that for decreasing concentration the amplitude
drops but also for c ≤ 25 mmol l−1 we find three resonance
peaks of approximately same height.

From these observations we feel confident to draw the
following conclusions:

• Slow Spin Exchange: For concentrations in the
range of 0.25 mmol l−1 to 25 mmol l−1 we can see
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FIG. 13. Depicted is a series of several measurements with
varying concentration of the TEMPO solution. The coloured
curves are fits. With increasing concentration the hyper fine
splitting broadens and finally coalesces into one peak at c =
50 mmol l−1. The spin exchange results in a narrowing of the
left over resonance. The intensity of the curves with lower
concentration was scaled up logarithmically with respect to
the one for 250 mmol l−1, because otherwise one would only
see flat lines for these.

three distinct peaks, i.e. three possible hyperfine
transitions. This is due to the fact that the spin
exchange is slow compared to transition times.

• Moderate Spin Exchange: For a concentration of
50 mmol l−1 the spin exchange is slightly faster and
leads to a unification of the distinct peaks. They
are now incorporated in one wide peak.

• Fast Spin Exchange: For concentrations 83 mmol l−1

to 250 mmol l−1 the one remaining peak gets more
and more accented. The system is now fully de-
scribed by only one transition and the narrower the
peak the smaller the time-energy uncertainty.

TABLE IV. Line width of the hyperfine resonances extracted
from the ESR spectra in figure 13. For faster spin exchange
there is only one peak, thus only one line width.

c ∆B1 ∆B2 ∆B3 〈∆Bi〉
[mmol l−1] [mT] [mT] [mT] [mT]

0.25 0.950 0.895 1.100 0.982
5 1.094 1.076 1.046 1.072

10 1.172 1.220 1.118 1.170
25 1.576 2.097 1.400 1.691
50 – 2.712 – 2.712
83 – 1.940 – 1.940

125 – 1.629 – 1.629
175 – 1.364 – 1.364
250 – 1.202 – 1.202

Analysis of the Spin Exchange

To study the dependency of the spin exchange on the
TEMPO concentration we plot the line widths over the
concentration. The rate constant ke of the spin exchange
can then be extracted from fits to the data.

First of all we need to extract the line width of the
resonance peaks from the fits in figure 13. Therefore
differential Lorentzians were fitted to the data.

F =
dL
dB

= − 8I

(∆B)2

B −Bres[
1 +

(
2

∆B (B −Bres)
)2]2 . (75)

For the curves with three peaks, i.e., 0.25 mmol l−1 to
25 mmol l−1, a superposition of three fits was chosen.

G =
dL
dB

= −
3∑
i=1

8Ii
(∆Bi)2

B −Bres,i[
1 +

(
2

∆Bi
(B −Bres,i)

)2
]2 .

(76)
The fit parameters obtained from gnuplot are listed in
table IV.

According to theory all line width should be the same
for the spectra with three peaks which they are almost in
a first approximation. Still, to eliminate errors we average
over the values. The so obtained values are plotted over
their corresponding concentration to achieve figure 14.
The values for slow spin exchange are highlighted with a
grey background. Even without the additional fit curves
one can clearly see that the values for slow spin exchange
are neatly aligned on an ascending slope, whereas the
values for moderate and fast spin exchange obviously
decay (it cannot be told at first sight if this is a power
law or an exponential).

In the basics, as in [10], a linear dependency between
concentration and line width was found for slow spin
exchange.

kec =
geµB
~

∣∣∣∣ 1

1− ϕ

∣∣∣∣ (∆B(c)−∆B(0)) (77)
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FIG. 14. Plotted is the average line width of the hyperfine
resonances ∆B over the concentration of TEMPO c. The data
of this plot can be reviewed in table IV.

For equally distributed intensities to all peaks one has
ϕ = 1/3. Furthermore it is given that ge = gTEMPO =
2.0058. To obtain ke we fit a linear slope to the values
for the slow spin exchange.

Fke(c) = α · c+ β (78)

Using the gnuplot utility we find the values α = 0.0293
and β = 0.934. While we are not really interested in β,
we are definitely interested α, as this is proportional to
our rate constant. Together with the above relations one
has

ke =
geµB
~

∣∣∣∣ 1

1− ϕ

∣∣∣∣α = 7.773 · 109 l mol−1 s−1 (79)

Unfortunately [10] doesn’t list any values for our experi-
mental configuration. However [11] lists some values for
pretty similar setups:

TEMPO in acetone: ke = 7.8 · 109 l mol−1 s−1

TEMPO in methanol: ke = 2.8 · 109 l mol−1 s−1

4-oxo-TEMPO in acetone: ke = 8.1 · 109 l mol−1 s−1

4-oxo-TEMPO in toluene: ke = 5.27 · 109 l mol−1 s−1

(80)
Our values stand in good agreement with these. Thus we
consider our analysis correct.

For the fit for the data for the fast spin exchange we
assumed a power law given by

Gke(c) =
ξ

c
+ ζ (81)

This form yields a good overlap with the data points. The
parameters obtained using gnuplot are ξ = 93.50 and
ζ = 0.839.

Lifetime of the Spin States

One method to describe states of finite lifetime is non-
hermitian quantum mechanics (NHQM) [12]. This theory
stands out due to the fact, that in contrast to normal
quantum mechanics the Hamiltonian does not need to be
hermitian, i.e., H 6= H†. Those non-hermitian operators
posses eigenvalues which are in general complex. Looking
at the unitary time evolution of a state

ψ(t) = e−iλt/~ψ(t0) (82)

one immediately sees that an imaginary part in λ is
equivalent to a decay rate. States with an eigenvalue with
an imaginary part not equal to zero are called resonances.
For a general resonance one assumes

λ = E − i
Γ

2
(83)

with the decay rate Γ of the resonance. As the unitary
time evolution is no longer norm conserving a new form
of the measurement postulate needs to be found

Pi = 〈φi|ψ〉 〈ψ̃|χi〉 (84)

with the left eigenvector 〈φi|, the right eigenvector |χi〉
and the dual conjugate state 〈ψ̃|. The decay rate Γ can
be seen as the line width of the state in units of energy
and we define the lifetime τ = ~/Γ.

In our example the line width is given by ∆B which is
connected to energy via equation (27). Using this in the
defintion of the lifetime, one has

τ =
~

geµB∆B
(85)

Plugging in the data from table IV yields the plot in
figure 15.

The lifetime τ of the hyperfine states increases for
decreasing concentration in the regime of the fast spin
exchange. For the regime of the slow spin exchange the
case is exactly vice versa, the lifetime τ of the hyperfine
states decreases for increasing concentration.

SUMMARY

In the following section we want to summarise the
experimental results. Note that thanks to the damaged
klystron a analysis of the first lab day (experiments with
microwaves) was not possible.

Experiments on ESR I

Quality of the resonator: With help of equation Q =
ν0/∆ν we determined the quality factors Q for an empty
resonator and a filled one. The particular Q-factors are
listed in table I.
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FIG. 15. Plotted is the lifetime of the spin states τ , as obtained
from their line widths, over the concentration of TEMPO c.
For the slow spin exchange the find the expected behaviour,
verified by a fit. For the fast spin exchange the expectation
is broken as the data is not aligned on a fit of the expected
behaviour.

Calibration of the Hall probe: With the well known g-
factor of DPPH and the measured microwave frequencies
we were able to find the relation

B(UH) = 2.5099 · UH (86)

for the calibration of the magnetic field.
Dependency of the spectra: In this task we investigated

the behaviour of the ESR spectra of DPPH depending
on different system parameters (modulation frequency,
integration time, modulation amplitude and power of
the microwave). Due to the inductive reactance of the
modulation coil the signal amplitude decreased for high
frequencies (see figure 6). Also for long integration times
we observed asymmetric curves with decreasing amplitude
(see figure 7). Depending on the modulation amplitude
the signal became asymmetric. This was especially the
case for high signal amplitudes (see figure 8). Varying
the power of the microwave did not affect the shape of
the curve (see figure 9).

Hyperfine structure of DPPH: For three DPPH sam-
ples of different concentrations we measured the ESR

spectrum and determined the FWHM

∆B(1 : 0.7) = 1.661 mT (87)

∆B(1 : 10) = 1.652 mT (88)

∆B(1 : 50) = 1.553 mT. (89)

The ESR spectra, depicted in figure 10, show that only
for highly diluted solutions it was possible to observe the
hyperfine structure. The hyperfine splitting, caused by
the nuclear spin I = 1 was determined as

ADPPH = 1.720 mT, (90)

which is within the range of possible results.

g-Tensor of Cu2+: Based on the ESR spectra of
CuSO4, depicted in figure 11, we used two methods to
determine the parallel and perpendicular components of
the g-Tensor. With the method, shown in [5] we found

g⊥ = 2.27 and g‖ = 2.09. (91)

The method presented in [6] gives

g⊥ = 2.10 and g‖ = 2, 24. (92)

Comparing this with the literature values ĝ⊥ = 2.05 and
ĝ‖ = 2.38 yields the relative deviations

Q(g⊥, ĝ⊥) = 2.4 % and Q(g‖, ĝ‖) = 5.0 %. (93)

Obviously, both methods yield different values.

ESR analysis of Mn2+: Figure 12 shows the ESR spec-
trum of Mn2+. The six visible peaks correspond to a
hyperfine splitting in six lines. With help of the fit func-
tion (66) it was possible to determine the g-factor and
the hyperfine splitting

g = 2.01, (94)

A = 9.28 mT. (95)

The six hyperfine splittings indicate the nuclear spin
I = 5/2.

Spin density at the core: With help of the previous hy-
perfine splitting it is possible to determine the spin density
of the paramagnetic electrons for DPPH and Mn2+

|ψDPPH(0)|2 = 1.007 · 1030 m−3 (96)

|ψMn2+(0)|2 = 1.587 · 1030 m−3. (97)

The spin density describes the probability density of pres-
ence of one particle at the core and not a spacial density of
“matter”. Note that here we have to deal with the Fermi
contact interaction and the indirect hyperfine splitting
due to the dipole-dipole interaction of the electrons and
nuclear moments. The dipole-dipole interaction also leads
to a hyperfine splitting of the unpaired electrons. For
Mn2+ this is the case.

Experiments on ESR II

TEMPO concentration: In figure 13 we see a series of
ESR spectra with varying concentration of the TEMPO
solution. Based on this figure we aim to investigate the
spin exchange of the paramagnetic molecules. For con-
centrations 0.25 mmpl to 25 mmpl we are in the range
of slow spin exchange. For a concentration of 50 mmpl
we are in the regime of moderate spin exchange. For
concentrations 83 mmpl to 250 mmpl we are in the range
of fast spin exchange.
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Spin Exchange: Next, we plotted the average line
width of the hyperfine resonances over the concentra-
tions of TEMPO to determine the rate constant ke. With
help of equation 77 and an additional linear fit we found

ke = 7.773 · 109 l mol−1 s−1. (98)

which is within the range of possible results.
Lifetime of the Spin States: In figure 15 the lifetime

of the spin states is plotted over the concentration of
TEMPO. With help of non-hermitian quantum mechanics
(NHQM) we derived a term for the lifetime

τ =
~

geµB∆B
. (99)

The regime of slow spin exchange decreases form 6 ps to
2.5 ps and transfer to the regime of fast spin exchange.
Hence the lifetime τ decreases with increasing concentra-
tion and vice versa for increasing τ .

APPENDIX

In this section you will find some formulas used in the
report which were not explained in the basics, because
they are not related to ESR in any way. Furthermore you
may find comments on particular aspects of the report
which are not of scientific nature.

Arithmetic Mean: The arithmetic mean of a series is
defined as a sum over all members of the series divided
by the number of members. Let s = {si | 1 < i < N},
then the arithmetic mean is given by

s̄ ≡ 1

N

N∑
i=1

si . (100)

Relative Deviation: The relative deviation is a measure
for the difference between two values and is given in
percent. Suppose a and b are measured values for the
same quantity and thus have the same unit. Their relative
deviation is given by

Q(a, b) =
a− b
b
· 100 % . (101)

Constants: If not stated otherwise physical constants
are taken from [13].
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