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Superconductivity is the phenomenon of electric current being transported without any losses. In
this experiment we study a specific feature of superconductors called Josephson effect. We determine
the Stewart-McCumber parameter and the peak Josephson current density of the Niob tunnelling
junction as well as the London penetration depth. Furthermore the dependency of the Josephson
current on the temperature and the magnetic field is determined.

BASICS

The Josephson effect derives from a certain property of
special materials called superconductors. Before we dive
into the description of the Josephson effect we settle the
features of superconductivity.

Superconductivity

There exist certain materials which, when they are
cooled below a specific critical temperature, loose their
resistance with respect to the transport of electric cur-
rent. Because the resistance of a superconducting ma-
terial exhibits a sharp edge at the jump temperature
the superconducting state qualifies as a physical phase.
Superconductivity is a phase transition of second order.

Macroscopic Interpretation: An ideal conductor, if
placed in a weak external magnetic field B and cooled
down, is flooded with the magnetic field. A superconduc-
tor in contrast ejects the field up to a certain depth called
the London penetration depth λ. The field inside of the
superconductor can be expressed by

Bi = µ0(H + M) = µ0(H + χH) = µ0H(1 + χ) (1)

with the magnetic field constant µ0, the magnetic field
intensity H and the susceptibility χ. The susceptibility χ
determines the characteristics of the respective material,
viz. χ < 0 is called diamagnetic, χ > 0 is called param-
agnetic. For χ = −1, i.e. vanishing inner field we speak
about an ideal diamagnet.

Quantum Mechanical Interpretation: During the mea-
surement of tiny screening currents it was found that they
are quantised with h/(2e). This means that a quantum
theory is needed to fully understand the phenomenon of
superconductivity. It was found that an attractive inter-
action between electrons emerges in the superconducting
phase. This interaction is communicated via the exchange
of a virtual phonon in the lattice of the superconductor.
More intuitively, an electron polarises the lattice and the
emerging positive charge cloud attracts another electron.

London Equations

In the macroscopic interpretation it is possible to derive
effective equations which describe the dynamics of the
supercurrent. For the London equations it is assumed that
the superconducting charges obey a modified version of
Ohm’s law where not the current density but its temporal
derivative is proportional to the electric field. Thus for
E = 0 one has ∂tj = 0 which implies j = const, that is
a current will also flow without an external field. The
London equations read with the index S standing for
superconducting

jS =
nSe

2
S

mS
E 1. London equation (2)

∇× jS = −nSe
2
S

mS
B 2. London equation (3)

where nS is the particle density, eS the charge of the
superconducting charges and mS their mass.

Because screening currents require the presence of a
magnetic field the external field has to penetrate a little.
Consider therefore ∇×B = µ0jS

∇× (∇×B) = −∇2B = µ0∇× jS (4)

with the second London equation

∇2B =
µ0nSe

2
S

mS
B (5)

Using an ansatz of an exponential decay B = B0e−x/λL

and jS = jS,0e−x/λL yields

λL =

√
mS

µ0nSe2
S

(6)

This quantity is called the London penetration depth and
is in general of the order 15 nm.

From the London equation we can immediately draw
conclusions for a microscopic theory. We know that we
can obtain an electric and a magnetic field from the vector
potential A

B = rotA , E = −∂A
∂t

. (7)
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In Coulomb gauge one has

divA = 0 . (8)

We plug this into the material equations where we abbre-
viate Λ = mS/(nSe

2
S).

Λ
∂jS
∂t

= −∂A
∂t

(9)

Λ rot jS = − rotA (10)

From these two equations we find by comparison (or
integration)

ΛjS = −A . (11)

To gain a better insight into the meaning of this expression
we consider the definition of the probability flux density of
quantum theory. With minimal coupling to the magnetic
field one has

j(x) =
e~

2mi

[
ψ∗(x)∇ψ(x)− ψ(x)∇ψ∗(x)

]
︸ ︷︷ ︸

j1

−e
2

m
Aψ∗(x)ψ(x)︸ ︷︷ ︸

j2

. (12)

In term of the field quantisation one obviously has to
replace ψ∗(x) and ψ(x) with the respective field operators

ψ̂†(x) and ψ̂(x). Thus j(x) also becomes an operator

ĵ(x), which possesses an expectation value.

〈ĵ(x)〉 = 〈Φ|ĵ(x)|Φ〉 . (13)

If there is no vector potential A present, i.e. no magnetic
field, the flux density vanishes in the ground state, be-
cause the expression j1 in square brackets is zero. If the
expression in brackets j1 were still zero when a magnetic
field is present then ΛjS = −A would be fulfilled. In this
case the flux density would reduce to

〈ĵ(x)〉 = −e
2

m
A 〈Φ|ψ̂†(x)ψ̂(x)|Φ〉 = −e

2

m
A 〈n̂〉 . (14)

where the flux density is proportional to the vector po-
tential A und the product ψ̂†(x)ψ̂(x), representing the
particle density. In reality the vector potential influences
the electron wave functions and the expression in brack-
ets j1 contributes. For j1 to still vanish even though a
magnetic field is switched on the electron wave functions
need to be rigid, i.e. the must not change if a magnetic
field is present. This rigidity can be accomplished by
a separating the ground and the excited state with an
energy gap, which needs to be overcome by the strength
of the magnetic field. The theory of the energy gap has
turned out to be very successful and will be verify by this
experiment.

BCS theory

A microscopic explanation for superconductivity was
found by Bardeen, Cooper and Schrieffer. This theory
addresses the following experimental findings:

1. Superconductivity vanishes for a critical tempera-
ture TC , a critical current IC or a critical magnetic
field BC .

2. The magnetic flux is quantised by h/(2e).

3. The isotopy effect, i.e. the critical temperature de-
pends on the mass of the lattice particles TC ∼
1/
√
m.

4. Ground and excited state are separated by an energy
gap.

We just address these points right away. From 2. follows
that electron pairs are responsible for charge transport
and from 3. we conclude that the interaction is phononic.

For an attractive interaction between two electrons the
ground state of the Fermi gas is no longer stable and the
energy of those two electrons is lowered. How can such
an attractive interaction arise?

This question was answered by Fröhlich in 1950 as he
derived an interaction between electrons and phonons in
term of quantum field theory. The Hamiltonian of the
whole system of electrons and phonons can be split into
two independent parts of dynamics and interactions

H = H0 +Hint . (15)

The components read

H0 =
∑
k,σ

~εka†k,σak,σ +
∑
w,σ

~ωwb
†
w,σbw,σ , (16)

Hint = ~
∑
k,w,σ

(
gwbwa

†
k+w,σak,σ + g∗wb

†
wa
†
k,σak+w,σ

)
.

(17)

with coupling constants gw. We assumed that the in-
teraction of the electron with the phonons does not al-
ter the electron spin. Now the Hamiltonian is trans-
formed into the Heisenberg picture where all initially
time-independent operators are replaced by their time-
dependent counterparts, which is denoted by a tilde. The
Heisenberg equation of motion for the phonon creation
operator reads

˙̃
b†w =

i

~
[H̃, b̃†w] = i

∑
k,σ

gwei(εk+w−εk−ωw)tã†k+w,σãk,σ .

(18)
If the operators were classical amplitudes, this would
mean that the phonon amplitude changes depending on
the electron movement. Intuitively one could say that
an electron moving through the lattice polarises it by
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deflecting the ions from their position of rest. This ion
displacement influences the movement of the electrons in
return. We consider a general operator Ã, which is made
up of electron operators and write down its Heisenberg
equation of motion

˙̃A = i
∑
k,w,σ

(
gw[ã†k+w,σãk,σ, Ã]b̃wei(εk+w−εk−ωw)t

+ g∗w b̃
†
w[ã†k,σãk+w,σ, Ã]e−i(εk+w−εk−ωw)t

)
. (19)

We integrate the equation of motion for b̃†w, assuming
that the interaction of electrons and phonons is weak such
that we can keep ã†k+w,σãk,σ constant in the temporal

integration. We plug the result for b̃†w into the equation
of motion for Ã. After longish calculations and a back
transform into the Schrödinger picture one can identify

˙̃A =
i

~
[H0, A] +

i

~
[Heff

int, A] (20)

in the equation of motion. For the effective interaction
one has

Heff
int = ~

∑
k,k′,w
σ,σ′

|gw|2
ωw

(εk′+w − εk′)2 − ω2
w

× a†k+w,σa
†
k′,σ′ak′+w,σ′ak,σ

+ ~
∑
k,σ

a†k,σ′ak,σ

[∑
w

|gw|2
1

εk − εk−w − ωw

]
. (21)

The second term represents the self energy of the electron
in the lattice, expressed by an energy shift, which can
be accounted for with the effective mass. The first term
includes the electron-electron interaction. This can be
rewritten to

HEl-El = −1

2

∑
k,k′,w
σ,σ′

vk,k′,wa
†
k+w,σa

†
k′,σ′ak′+w,σ′ak,σ

(22)
With this we can write down the Hamiltonian of super-
conductivity

H =
∑
k,σ

Eka
†
k,σak,σ

− 1

2

∑
k,k′,w
σ,σ′

vk,k′,wa
†
k+w,σa

†
k′,σ′ak′+w,σ′ak,σ . (23)

It is no longer obvious that the electron-electron interac-
tion is actually mediated by a phonon. In 1956 Cooper
found that even for this kind of Hamiltonian an attracting
force between two electrons of opposite spin is possible.
Thus we make up the states by creating pairs with oppo-
site spin an wave vector from the vacuum state

Φ =
∏
k

(uk + vka
†
k,↑a

†
−k,↓)Φ0 . (24)

The derivation of this state is not trivial at all, cf. [1,
281–289]. In this reference the expectation value of the
Hamiltonian with respect to Φ is also calculated. It reads

E = 2
∑
k

E′kv
2
k −

∑
k,k′

Vk,k′ukvkuk′vk′ (25)

with the abbreviation 2Vk,k′ = (vk,−k′,k′−k+v−k,k′,k−k′).
Minimising the expectation value leads to an equation for
the energy gap which solution is approximately given by

∆ ≈ 2~ωe−2/(D(EF )V0) (26)

with the density of states D(E) of the electrons and
the constant approximation of the matrix element of the
interaction Vk,k′ = V0.

Types of Superconductors

Type I: A type I superconductor possesses a super-
conducting phase below the critical temperature. The
magnetic field penetrates the material up to the London
penetration depth and decays exponentially in that re-
gion. If the external magnetic field is raised too high
the material performs a phase transition to the normal
conducting phase.
Type II: In contrast to type I superconductors these

materials do not immediately switch back to normal con-
duction when the external field is raised but go to an
intermediate phase. In this state the magnetic field floods
the conductor in form of quantised “flux sleeves”.

Josephson Effect

As the Cooper pairs, which are responsible for super-
conductivity are bosons they can condense into a common
ground state which can be expressed using a macroscopic
wave function like for a Bose-Einstein condensate. The
macroscopic wave function of the BCS ground state reads

ψ = ψ0eiϕ(r) =
√
nS eiϕ(r) , (27)

with

ψψ∗ = |ψ0|2 = nS (28)

The function ϕ(r) denotes a phase and possesses a well-
defined value for macroscopic distances. If we bring two
superconductors close together, i.e. they are separated by
an insulator of thickness less than 1 nm, the wave function
of one superconductor can extend into the other. If the
superconductors are separated farther they fulfil separate
Schrödinger equations

i~ψ̇1 = H1ψ1 , (29)

i~ψ̇2 = H2ψ2 . (30)
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with the eigenvalues E1 and E2. For coupled supercon-
ductors we apply perturbation theory

i~ψ̇1 = E1ψ1 + κψ2

i~ψ̇2 = E2ψ2 + κψ1

(31)

with the coupling parameter κ. In case of the su-
perconductors comprising the same materials one has
nS1 = nS2 = nS and E1 = E2 [2, p. 478]. If voltage drops
at the junction we find

E2 − E1 = −2eU (32)

We plug (27) into (31) and assume an explicit time de-
pendency of the density nS and the phase ϕ. Splitting
real and imaginary part yields

ṅS1 =
2κ

~
√
nS1nS2 sin(ϕ2 − ϕ1) ,

ṅS2 = −2κ

~
√
nS1nS2 sin(ϕ2 − ϕ1) ,

(33)

ϕ̇1 =
κ

~

√
nS1

nS2
cos(ϕ2 − ϕ1)− E1

~
,

ϕ̇2 =
κ

~

√
nS1

nS2
cos(ϕ2 − ϕ1) +

E2

~
.

(34)

The difference of the latter two equations is

~(ϕ̇2 − ϕ̇1) = −(E2 − E1) = 2eU (35)

which is called the 1. Josephson equation.

If no voltage is applied to the tunneling junctions one
has

~(ϕ̇1 − ϕ̇2) = 0 . (36)

It follow immediately

ϕ1 − ϕ2 = const . (37)

This implies constant arguments of the angular functions
in (33) and thus

ṅS1 = −ṅS2 . (38)

A current should flow between the two superconductors
where nS1 and nS2 are constant, else the superconductors
would get charged.

jS = jc sin(ϕ2 − ϕ1) (39)

is the 2. Josephson equation. A direct current flows
between the two superconductors, but there is no voltage
drop. This is called the direct current Josephson effect.
The critical current jc depends on the density of the
Cooper pairs nS , the contact area A and κ.
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FIG. 1. Temperature dependence of the critical current. The
red line is the isosurface where I = Ic. Below lies the super-
conducting phase, the normal conducting above.

Temperature and Magnetic Field Dependency

The BCS-theory implies a certain temperature depen-
dence of the maximal Josephson current, which depends
on the also temperature dependent energy gap ∆(T ). The
functional form of this dependency reads

Ic(T ) =
π∆(T )

2eR
tanh

(
∆(T )

2kBT

)
(40)

with the tunneling resistance R of the junction. A
schematic graph is shown in figure 1.

For an insulator of thickness D the magnetic field is
able to penetrate by λL. The effective thickness of the
barrier is thus d = 2λL+D. The Ginzburg-Landau theory
predicts for the phase at the junction

ϕ2 − ϕ1 =
2π

φ0
Bdx+ δ0 . (41)

Plugging this into the 1. Josphenson equation yields

jS = jc sin

(
2π

φ0
Bdx+ δ0

)
. (42)

To obtain the whole current passing through the junction
we need to integrate the current density over the surface
A of the junction.

IS(B) =

∫
A

js(x) dA =

∫ a

0

dx

∫ b

0

dy js(x)

= jCA sin

(
π

φ0
Bda+ δ0

)
sinc

(
Bda

φ0

)
. (43)

The modulus of this maximal Jospheson current is similar
to the refraction on a slit.

Ic(B) = Ic(0)

∣∣∣∣sinc

(
Bda

φ0

)∣∣∣∣ . (44)

A schematic curve is depicted in figure 2.
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FIG. 2. Magnetic field dependence of the critical current.

ANALYSIS

Experimental Task

The experiment is mainly divided into three experimen-
tal tasks.

Current-Voltage Characteristic: In the first experimen-
tal task some I-U characteristics of the Josephson Junc-
tion are recorded. In the experimental setup there are
four Josephson Junctions where two of them are shunted
and the other two are not shunted. The characteristics
are recorded with hysteresis and without. With help of
the measured data it is then possible to discuss and de-
termine the shuntresistance and the energy gap and the
McCumber parameter.

Magnetic Field Dependency: To investigate the de-
pendency of the magnetic field on the Josephson current
IC we use a Josephson Junction without hysteresis and
measure the maximal Josephson current IC for different
coil currents of the Helmholtz coils. The corresponding
magnetic field is given by

B =

(
4

5

)3/2
µ0nI

R
, (45)

where the ration n/R is given by n/R = 2144 W dg m−1

the calculation of the magnetic field B was done by Lab-
VIEW during the experiment. By doing this, we can
determine the London penetration depth λL and compare
the experimental results with the theoretical description.

Temperature Dependency: The temperature of the
Josephson Junction can be varied with an external volt-
age supply. By recording whole I-U characteristics for
different temperatures it is possible to plot the maxi-
mal Josephson current as function of the temperature
and compare the experimental data with the theoretical
description. Furthermore we can determine the energy
gap.

FIG. 3. Schematic illustration of the experimental setup.

The whole experimental setup is depicted in figure 3. As
shown additional coils are used to compensate the earth
magnetic field. With the Helmholtz coils it is possible
to investigate the dependency of the Josephson current
on the magnetic field. All measurements were done with
help of LabVIEW.

Current-Voltage Characteristic

Hysteresis and Shuntresistance: As aforementioned
the measurements were done and the Josephson current
IC is depicted as function of the voltage. In the case of
the hysteresis the results are depicted in figure 4 (a).

A measurement without hysteresis is depicted in figure 4
(b). At U = 0 V there is a nonvanishing current IC .
As mentioned in the basics this corresponds with the
theoretical description of the current free Josephson effect.
As predicted at a critical current IC the characteristic
follows the well known linear Ohm characteristic. At this
point all Cooper-pairs get broken and a tunneling process
is not possible anymore. For higher voltage there is an
additional irregularity.

The depicted behaviour indicates a shuntresistance par-
allel to the Josephson Junction. For voltages higher than
the critical point only single electron current through the
shuntresistance is possible. For high voltages the slope of
the characteristic is therefore given by the parallel resis-
tances of the normal conductor and the shuntresistance.

The subsequent measurements were done without hys-
teresis which is why an explicit discussion in the case of
the hysteresis is not given here.

Maximal Josephson Current: To determine the maxi-
mal Josephson current IC we use the enlarged measure-
ments without hysteresis depicted in figure 5 (a). With
help of the three depicted linear fits Fi it is possible to
calculate IC . The maximal Josephson current is given by
half the difference of the intersection point of F∞ and F2

and the intersection point of F2 and F3. If we use the

5
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FIG. 4. From left to right: (a) Measured data with hysteresis. Shown is the measured current as function of the voltage. (b)
Measured data with no hysteresis. For better visibility an inset is depicted in the top left corner.

notation

F1(U) = a1 · U + a2, (46)

F2(U) = b1 · U + b2, (47)

F3(U) = c1 · U + c2, (48)

it is easily to find

IC =
F1(U1)−F2(U2)

2
, (49)

where the voltages U1 and U2 are given by

U1 =
a2 − b2
b1 − a1

, U2 =
c2 − b2
b1 − c1

. (50)

Using the open source program gnuplot then leads to the
maximal possible Josephson current

IC =
b1
2

(
a2 − b2
b1 − a1

− c2 − b2
b1 − c1

)
(51)

= 0.097 mA. (52)

Energy Gap: Using the aforementioned calculations
and fits to figure 5 (b) also allows the extraction of the
size of the energy gap. The calculation is the same as
above and one finds

2∆ = Ug · e, (53)

where the voltage Ug is given by

Ug =
1

2

(
b1 − c1
c2 − b2

+
b1 − a1

a2 − b2

)
. (54)

The difference between the previous calculation is the plus
sign because now we want to calculate the mean value.
With gnuplot we find

Ug = 2.823 mV, (55)

∆ = 1.412 eV, (56)

where ∆ is the energy gap.

Steward McCumber parameter: To determine the
Steward McCumber parameter βC we use the measure-
ments without hysteresis depicted in figure 6. Using three
linear fits

F1(U) = a1 · U + a2, (57)

F2(U) = b1 · U + b2, (58)

F3(U) = c1 · U + c2, (59)

and Ohms law R = U · I gives us the total resistance Rtot

Rtot =
a1 + b1

2
, (60)

which is obviously the mean value. The shuntresistance
is related to RS = c1. To determine the resistance of the
normal conductor we use a simple parallel circuit of RS
and RN , i.e. the total resistance is

1

Rtot
=

1

RN
+

1

RS
. (61)

A simple conversion leads to the resistance of the normal
conductor

RN =

(
1

Rtot
− 1

RS

)−1

. (62)

With help of gnuplot we find

Rtot = 0.556 Ω, (63)

RS = 0.584 Ω, (64)

RN = 11.281 Ω. (65)

The McCumber parameter βC is finally given by

βC = ω2
PR

2
totC

2 =
2eICC

~
R2

tot, (66)
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FIG. 5. From left to tight: (a) Enlarged depiction of the chritical Josephson Current IC . The three linear fits Fi are used to
determine IC . (b) Enlarged depiction of the bandgap with three linear fits to determine the gap voltage Ug and hence the
energy gap ∆.
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FIG. 6. Fits Fi(U) for the determination of the McCumber
parameter βC .

where the capacity C is 200 fF. Plugging all results in
leads

βC = 0.0182, (67)

which is obviously much smaller than 1 and hence a
hysteresis free junction. This result is not very astonishing
because by just watching at the characteristic curve one
can see this. Consequently the theoretical description and
the experimental results are consistent.

Dependency of the Magnetic Field

In this section we want to discuss the dependency of the
maximal Josephson current on an external magnetic field.
To do so a lot of measurements had to be done. While
varying the external magnetic filed from 0.0 mT to 3.0 mT
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FIG. 7. Maximal Josephson current IC as functinon of the
magnetic field B.

in steps of 0.2 mT the characteristic curve were recorded
and the maximal Josephson current IC determined as
describes above. The results are depicted in figure 7.

Note that the mirroring of the measured data is le-
gal because of the symmetry of the expected diffraction
pattern, i.e. only positive values of B had to be used.

To determine the London penetration depth λL it is
necessary to use the fit function

F(B) = a ·
∣∣∣∣ sin(b ·B)

b ·B

∣∣∣∣ , (68)

where the fit parameters are

a = 100.92 µA, b = 2.823. (69)

Here the fit parameter b is given by b = πmT/B∆, where
B∆ denotes the distance of two minima of the diffraction
pattern.
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London Penetration Depth: Using the fit parameters
a and b we can calculate the London penetration depth
with

λL =
1

2

(
b · 103

T
· ~
ew
−D

)
, (70)

where D = 30 nm is the thickness of the junction, e the
elementary charge, ~ the reduced Planck constant and
w = 10 µm the width of the junction. Plugging in all
results leads

λL = 77.917 nm. (71)

Josephson Penetration Depth: Using the equation

λJ =

√
AwmT

2µ0ICb
(72)

allows the calculation of the Josephson penetration depth
λJ . Here A = 100 µm2 is the surface of the Josephson
Junction. Using IC = 97 µA (from above) and plugging
in gives

λJ = 38.12 µm. (73)

Obviously the condition λJ > w is fulfilled, i.e. the field
induced by the supra currents can be neglected (see basics).
Moreover we are not expecting a damping behaviour of
the IC-B curve depicted in figure 7.

The literature value for the London penetration depth
of niobium is given by

λlit
L = 39 nm. (74)

Compared with our result of λL = 77.917 nm we achieve a
percentage error of roughly δλL ≈ 50 % due to the purity
of the sample.

Dependency of the Temperature

In the following section we want to discuss the depen-
dence of different quantities on the temperature. There-
fore we recorded the characteristic curve for the temper-
atures T ∈ {4.18 K, 4.27 K, 4.84 K, 5.54 K, 6.54 K, 7.4 K,
8.52 K}. As discussed in the previous sections it is possi-
ble to find to each measurement the maximal Josephson
current and the energy gap.
Maximal Josephson Current: The determined maxi-

mal Josephson currents as function of the temperature
to each measurement are depicted in figure 8 (b). Fig-
ure 8 (a) shows the I-U characteristic near U = 0 for
selected measurements. Both figures show a decreasing
maximal Josephson current IC for increasing temperature
as predicted from the BCS theory. One finds the propor-
tionality IC(T ) ∝ tanh(T ). To compare the experimental
data with the theoretical expectations it is sensible to

transform to reduced quantities. To do so we introduce
the reduces temperature T/TC and a reduced energy gap
∆(T )/∆(0). It is then possible to convert the well known
formula for the temperature dependence

IC(T ) =
π

2eRN
∆(T ) tanh

(
∆(T )

2kBT

)
(75)

to a reduced formula

IC(T )

IC(0)
=

∆(T )

∆(0)
tanh

(
∆(T )

2kBT

TC∆(0)

TC∆(0)

)
. (76)

Let x ≡ T/TC and y ≡ ∆(T )/∆(0) be new variables, than
we can write

IC(T )

IC(0)
= y(x) tanh

(
y(x)

x

1.76

2

)
. (77)

This is an implicit function which is depicted in figure 8
(c). There are also the scaled data represented. To do so
we have to divide the data by IC(0) or TC . A possible
assumption could be IC(0) ≈ IC(4.2 K) = 97 µA (result
from above) and the literature value TC = 9.2 K. This
case corresponds to the red dots in figure 8 (c). An
optimisation for IC(0) and TC leads to the parameters

TC = 10.7 K, IC(0) = 100 µA. (78)

Using these parameters gives the green dots depicted in
the figure. The figure shows that our first assumption fits
very well. Nevertheless we had to choose a higher critical
temperature beyond that of niobium. This inconsistency
is presumably based on the difficulty of measuring the
real temperature at the Josephson Junction.

Energy Gap: Like in the previous chapter it is possible
to calculate the energy gap by fitting the curves depicted
in figure 8 (d). Note that in the figure are three selected
measurements are depicted. In figure 8 (e) there are
the results of the energy gap as function of the tempera-
ture. Obviously the energy gap decreases with increasing
temperature. As done above it is possible to introduce
reduced quantities. From the BCS theory we know the
theoretical curve which we can rescale to

∆(T )

∆(0)
= tanh

(
TC
T

∆(T )

∆(0)

)
, (79)

where ∆(0) = 1.76kBTC . Using the reduced variables y ≡
∆(T ) and x ≡ T/TC give birth to the implicit function

y(x) = tanh

(
y(x)

x

)
, (80)

which is depicted in the reduced scheme in figure 8 (f).
The red dots corresponds to the reduced energy gap values
from figure 8 (e). For the scaling parameters we used the
literature values TC = 0.2 K and 2∆(0) = 2.9 meV. The
figure shows, that there is a remarkable correspondence
between the experimental results and the theoretical pre-
dictions.
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ERROR DISCUSSION

Due to the precision of the measuring devices and
some technical limitations we want to discuss in this
section typical sources of errors. The whole discussion
is confined in a rather qualitative way than an explicit
errors computation.

In all measurements and experimental tasks the mea-
surement of the real temperature of the Josephson Junc-
tion was technically not possible. However, this problem
was already mentioned in the instruction notes and ap-
proved in the analysis of the temperature dependence of
IC (see figure 8 (c)). Moreover the determination method
of extracting the maximal Josephson current IC especially
for temperature near the critical temperatures seems to
be unsuitable due to the small currents. Equally the
determination of the energy gap ∆(T ) is for temperatures
near TC nearly impossible. A more technical problem is
the used software programme itself. From reasons we can
not explain the programme often crashes, so we had to
start the measurement process from the beginning.

SUMMARY

In this section we want to draw a short summary of
the experimental results.
I-U Characteristic: In the first experimental task we

measured the current-voltage characteristic for fix temper-
ature T = 4.2 K with and without hysteresis. With help
of a three linear fitting method the maximal Josephson
current IC = 97 µA and the energy gap ∆ = 1.412 meV
were calculated (see figure 5 (a) and (b)). Moreover it was
possible to determine the shuntresistance RS = 0.585 Ω
as well as the normal conducting resistance. Note that
we first calculated the total resistance and then with help
of the formula of a simple parallel circuit the normal con-
ducting resistance. Moreover we calculated the Steward
McCumber parameter βC = 0.0182 which is obviously
much smaller than 1 and thus a overdamped Josephson
Junction was used without hysteresis as depicted in fig-
ure 4 (b).

Dependency of the Magnetic Field: In the second tasks
some characteristic curves were measured while varying
the magnetic field. As predicted from the theory a typical
diffraction pattern was measured which is sown in figure 7.
With help of the measured data we calculated the London
penetration depth λL = 77.92 nm and the Josephson pen-
etration depth λJ = 38.12 µm. Note that the Josephson
penetration depth gives the typical length on which an
external magnetic field penetrates into to Josephson Junc-
tion whereas the London penetration depth characterises
the distance to which a magnetic field penetrates into a
superconductor.
Dependency of the Temperature: In the last experi-

mental task again some I-U characteristics were measured

but this time for different temperatures. With help of the
methods discussed in the previous experimental tasks it
was then possible to calculate the maximal Josephson cur-
rents and energy gaps to each characteristic. The results
are depicted in figure 8. Due to the known problem with
the temperature measurement an optimisation of TC and
IC(0) in case of the dependency of the Josephson current
on the temperature leads to

TC = 10.7 K, IC(0) = 100 µA, (81)

which fits within the discussed errors to the theoreti-
cal prediction. Nevertheless the critical temperature is
compared to the literature value of 9.2 K to high. Using
reduced quantities in case of the dependency of the energy
gap on the temperature as depicted in figure 8 (f) shows a
remarkable correspondence between experimental results
and the theoretical predictions.
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FIG. 8. From left to right: (a) Selected measurements near U = 0. For increasing temperature T → TC the maximal Josephson
current IC decreases. (b) Maximum Josephson current IC as function of the temperature T . (c) Reduced Josephson current
as function of the reduced temperature. The blue line corresponds to the theoretical result of the BSC theory. The red dots
corresponds to the literature value TC = 9.2 K with IC = 97 µA as calculated in the previous tasks. The green dots results from
the optimisation with IC(0) = 0.1 µA and a critical temperature of TC = 10.7 K. (d) Selected measurements near U = 2∆/e. As
predicted from the BSC theory the energy gap decreases for increasing temperature. (e) Dependence of the energy gap 2∆ on
the temperature. (f) Reduced energy gap as function of the reduced temperature. The blue curve arises from the BSC theory.
To calculate the reduced quantities we used the literature values 2∆(0) = 2.9 meV and TC = 9.2 K.
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