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The present experiment deals with the fundamental properties of nonlinear dynamical systems,
chaotic behaviour and chaos. In the experiment two different kinds of nonlinear oscillators are
investigated, viz. the inverted pendulum and a Shinriki oscillator. To find chaotic behaviour and
periodic orbits the phase portrait, autocorrelation function as well as the Fourier transform of the
measured signal are calculated. In case of the Shinriki oscillator a Feigenbaum diagram and a phase
diagram of the control parameter is recorded.

BASICS

The following section is a short introduction to non-
linear dynamical systems, chaos and their mathematical
description.

Dynamical Systems

For many physical problems it is possible to rewrite
the equations of motion in a set of first order differential
equation

d

dt
x(t) = F (x(t), t), (1)

where t is the time, x(t) the trajectory in real space
and F (x(t), t) a vector field. Note that F (x(t), t) is in
general a smooth function. The whole time evolution of a
dynamical system is determined by the initial conditions
and hence it is always possible to find a deterministic
solution. A more formal definition is:

Definition 1 (from [1]). A smooth dynamical system on
Rn is a continuously differentiable function φ : R×Rn →
Rn, where φ(t,x) = φt(x) satisfies

1. φ0 : Rn → Rn is the identity function: φ0(x0) = x0.

2. The composition φt ◦ φs = φt+s for each t, s ∈ R.

Here φt(x) is the so called evolution function or flow
which describes how the system in the configuration x
evolves in time t. If F (x(t)) does not explicitly depend on
t we deal with a so called autonomous systems. Calcula-
tion of an analytical solution in case of nonlinear systems
is rarely feasible. A physical system is called nonlinear
if additional time dependent variables of higher orders
appear in equation (1). Typical examples of nonlinear
systems are damped driven pendulums, the three body
problem or the Navier-Stokes equation [1, 2].

Phase Space: All possible states of a dynamical system
are represented in the phase space which consists of all
conceivable values of space and momentum variables and

is therefore a vector space. A more formal representation
is given by the phase space vector

ξ =
(
q1, . . . , qf , p1, . . . , pf

)T
, (2)

where qi are the positions, pi the corresponding momenta
and f the number of degrees of freedom [3].

Dissipative Systems: In the case of Hamiltonian sys-
tems the phase space distribution function is constant
along the trajectories of the system according to Liou-
ville’s theorem, i.e. the phase space volume is preserved.
If the systems contains additional dissipative terms the
phase space volume decreases and the system is called
dissipative. A typical example is a damped harmonic
oscillator.

Trajectories in the phase space must not intersect, oth-
erwise the intersection point leads to indefinite time evolu-
tion. Note that nonlinear dynamical systems may exhibit
chaotic behaviour, which is in general not equivalent to
chaos.

Chaos

Dynamical systems that are highly sensitive to initial
conditions may contain chaotic behaviour or chaos, i.e.
small differences in the initial conditions results in dif-
ferent outcomes. Therefore a long term prediction is in
general impossible. Although these systems are deter-
ministic it is not possible to predict their future. This
behaviour is called deterministic chaos. Typical examples
are the three body problem or the Lorenz attractor.

Lyapunov Exponent: To describe the evolution be-
haviour of a dynamical system it is common to define the
Lyapunov exponent

λi = lim
t→∞

1

t
ln

(
‖δxi(t)‖
‖δxi0‖

)
, (3)

where the index i describes the spatial direction, ‖δxi(t)‖
the distance between the i-th component of the observed
curve and the reference curve at time t and ‖δxi0‖ the
distance at time 0. The Lyapunov exponent is a measure
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for the rate of separation of infinitesimally close trajec-
tories. For λ > 0 the trajectories diverge, for λ < 0 they
converge. The distance remains constant if λ = 0.

Attractor: An attractor describes the long time evo-
lution of a dynamical system for a wide variety of initial
conditions, i.e. a set of points in phase space towards the
system contracts. Once an attractor is reached it is impos-
sible to leave it. An attractor can be a single point (or a
finite set of non-continuously distributed points), a curve
(limit cycle), a manifold (torus) or a strange attractor like
the Lorenz attractor.

Signal Analysis and Autocorrelation

This section shows how to identify important properties
of a dynamical system by Fourier transform the measured
signal, looking at the autocorrelation function or the
power spectral density. Henceforth the notation x(t) is
used for the measured signal.

Fourier Transformation: The Fourier transformation
of a function f(t) is given by

F(ω) ≡ 1√
2π

∞∫
−∞

f(t)e−iωt dt. (4)

The inverse Fourier transformation is

f(t) ≡ 1√
2π

∞∫
−∞

F(ω)eiωt dω. (5)

Note that f(t) is an integrable function.

Autocorrelation: The autocorrelation function γ(τ) is
defined by

γ(τ) ≡ 〈x(t), x(t+ τ)〉 (6)

=

∞∫
−∞

x(τ)x(t+ τ) dτ (7)

and is a tool for finding repeating pattern like periodic
behaviour. In case of chaotic behaviour the autocorrela-
tion function is zero. For periodic behaviour one observes
an autocorrelation function much larger than zero. Note
that a measurement process itself is finite in time and
therefore it is not possible to integrate from −∞ to ∞
and the total energy can not reach a finite value. Is this
the case it is helpful to use the time average

γ̄(τ) ≡ lim
T→∞

1

2T

T∫
−T

x(t+ τ)x(t) dt, (8)

where T is the period time.

Power Spectral Density: The power spectral density
(PSD) describes the optical power per frequency interval
and has the physical dimension [PSD] = W Hz−1. We can
also say it describes how the power of signal or time series
are disturbed over different frequencies. It is defined by

Sxx ≡
∫ ∞
−∞

γ(τ)e−iωτ dτ, (9)

where γ(τ) = 〈x(t), x(t+ τ)〉 is the autocorrelation func-
tion of the measured signal. The PSD is a statistical
measure which can be calculated by averaging over many
measurement results.

Discret Dynamical Systems

Sometimes it is possible to reduce a differential equation
to an iterated function. Due to the lower dimensional
space a easier visualisation is possible. Moreover instead
of integrating it is now possible to solve the problem by
iterating the function over and over. An iterative function
in one dimension is given by the map

ui 7→ ui+1 = f(ui). (10)

A point is called a fixed point if u(x0) = x0. A periodic
point of period n is given by un(x0) = x0 for some n > 0.
As a consequence a periodic orbit repeats itself. A periodic
point x0 has minimal period n if n is the least positive
integer for which un(x0) = x0 [1, 2].

Logistic Map: A typical example of a discrete dynam-
ical system is the logistic map

xn+1 = rxn(1− xn), (11)

where r > 0 is a control parameter and x ∈ [0, 1]. The
logistic map is a mathematical model for a driven damped
oscillator. Plotting x over r for many iterations one has
the so called Feigenbaum diagram, cf. figure 1 which
allows the determination of the Feigenbaum constants δ
and α. The constant δ is given by the ratio of the length
of two following periodic windows

δ =
rn−1 − rn−2
rn − rn−1

≈ 4.6692. (12)

The constant α is given by the ratio of the width of two
following periodic windows.

α ≈ 2.5029. (13)

ANALYSIS

In this section we discuss the experimental procedures
and the analysis of the measured data.
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FIG. 1. Feigenbaum diagram. The logistic map for many
iterations is shown.

Experimental Task and Setup

The experiment is mainly divided into four experimen-
tal tasks.

Inverted Pendulum: With help of a computer software
the displacement and velocity are measured as a function
of time to investigate the phase diagram and the Fourier
transform of the displacement. Measurements were done
for different driving frequencies. The aim is to observe
orbits with period one, two or higher, as well as chaotic
behaviour.

Shinriki-Oscillator: Like in the previous task measure-
ments were done with help of a computer software to
observe different vibrational states. This time the resis-
tances R1 and R2 are the control parameters. It is only
allowed to vary these parameters.

Feigenbaum diagram: For creating a Feigenbaum di-
agram it is necessary to do a lot of measurements for
varying control parameter R1. By plotting just the max-
ima of the measured data, i.e. the voltage as function
of the control parameter R1 a wild Feigenbaum diagram
appears. With help of the diagram it is then possible to
determine the Feigenbaum constant δ.

Phase diagram: With help of the Shinriki oscillator it
is possible to create a phase diagram of the two control
parameters R1 and R2. Therefore the measurement had
to be done by varying one of the control parameters while
the other one is held constant and vice versa. While one
of the control parameters is varied the transitions between
different vibrational states are noted down.

The experimental setup of the inverted pendulum is
depicted in figure 2 and the Shinriki oscillator in figure 3.
The data were recorded with LabVIEW.

FIG. 2. Circuit diagram of the inverted pendulum.

FIG. 3. Circuit diagram of a Shinriki oscillator. R1 and R2

are the control parameters.

Inverted Pendulum

The following experimental task deals with the inverted
pendulum. Before it is possible to record measurements
the experimental setup had to be adjusted. We chose for
the oscillating mass two small copper discs and two small
metal discs. The springs were applied at an altitude of
7 cm. All subsequent measurements were done with this
adjustment.

By varying the driving frequency it was possible to
observe different vibrational sates. To identify them the
autocorrelation function (8) and the Fourier transform (4)
of the measured signal were calculated with python. For
present adjustment it was possible to identify the following
vibrational states:

• An orbit with period three as shown in figure 4 (a).
With help of the Fourier transformed signal this
identification is possible. Obviously there are three
resonance frequencies besides the driving frequency
ν = 0.7 Hz. There are also higher orders visible in
the figure.

• An Orbit with period one as depicted in figure 4 (b).
This corresponds to the high resonance peak near
the driving frequency 0.80 Hz. This can also be seen
in the decreasing autocorrelation function.
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• An orbit with period two as depicted in figure 4 (c).
In the autocorrelation function it is possible to ob-
serve two decreasing oscillations. The two reso-
nance frequencies are also visible in the Fourier
transformed signal.

One can see that it is possible to identify the reso-
nance frequencies in the Fourier transformed figures. The
autocorrelation function decays for all measurements to
zero. As discussed in the basics this is due to the finite
measurement time.

Shinriki Oscillator

Like in the previous experimental task we are now in-
terested in observing different vibrational states. Instead
of varying the driving frequency now the two control re-
sistances R1 and R2 are varied. For the measurements
shown in figure 7 the resistance R2 = 18.6 kΩ while R1 is
varied. The measurements were done with a LabVIEW
program. The analysis is the same as in the previous task.
The measured data and the corresponding autocorrelation
functions as well as the Fourier transforms are depicted
in figure 7.

With help of the figure it is possible to identify the
following vibrational states:

• An orbit with period one is depicted in figure 7 (a).
The autocorrelation function decreases continually
and no other oscillations are superimposed.

• An orbit with period two is shown in figure 7 (b)
and (f). The autocorrelation functions shows this.
The Fourier transformed signal shows two peaks
corresponding to the resonance frequencies.

• An orbit with period three is depicted in figure 7
(e). All three resonances are visible in the Fourier
transformed signal.

• An orbit with period four is given in 7 (c). The
Fourier transformed signal shows all four peaks
where two of them are dominant compared to the
others.

• Mono-scroll chaos was observed in figure 7 (d). The
Fourier transformed signal shows the chaotic be-
haviour. One dominant peak surrounded by noise
is visible.

• Double-scroll chaos is depicted in figure 7 (g). Obvi-
ously the autocorrelation function shows that there
is no correlation in the signal. The two peaks in the
Fourier transformed signal are surrounded by noise.

Feigenbaum Diagram

For the Shinriki oscillator it is possible to observe a
Feigenbaum diagram by doing a lot of measurements.
Therefore we choose the control parameter R2 = 9.3 kΩ
and varied R1. For each varied R1 the measurement is
recorded. By searching the maximum of the recorded
data a data point to the adjusted R1 for the Feigenbaum
diagram is found. Plotting all these data one has the
Feigenbaum diagram depicted in figure 5. To determine
the Feigenbaum constant δ it is necessary to find the
data points which correspond to a bifurcation point. A
numerical search yields

R1→2 = 16.80 kΩ, (14)

R2→4 = 17.62 kΩ, (15)

R4→8 = 17.80 kΩ. (16)

The subscript in Ri→j indicates that for this control
parameter a change from period i to period j occurs.
Note that the figure shows only an interval of R1 where
a valid analysis is possible. With the bifurcation points
the determination of the Feigenbaum constant is possible.
For the measured data we find

δ =
R2→4 −R1→2

R4→8 −R2→4
= 4.56. (17)

The literature value is δ = 4.6692.

Phase Diagram

To record a phase diagram of the control parameters
R1 and R2 it is necessary to hold first one of the control
parameter constant while the other one is varied. We
held R2 fixed and varied then R1 from 0 kΩ to 100 kΩ and
noted down the points where a change of the vibrational
state is observed. Then a new value for R2 is chosen
and the measurement process is repeated. The measured
data were then plotted in a phase diagram to identify the
parameter constellations were different vibrational states
are possible. The diagram is depicted in figure 6. The
figure shows that for high values of R2 it is possible to
end at a great orbit with period one. Once this orbit is
reached it is impossible to go backwards, i.e. we end on an
attractor. Also for small values of R2 it is only possible to
observe an orbit of period one. Nevertheless, as depicted
for greater values of R2, it is possible to observe nearly
all vibrational states discussed in figure 7. Note that
for some cases it was due to the finite precision of the
potentiometer a bit annoying to identify the correct orbits.
Moreover the figure shows that double-scroll chaos and
mono-scroll chaos appear very often.
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FIG. 4. From top to bottom: (a) Phase diagram, autocorrelation function and Fast Fourier transform of the measured signals
with a driving frequency ν = 0.70 Hz. Depicted is an orbit with period three. (b) Phase diagram, autocorrelation function
and Fast Fourier transform of the measured signals with a driving frequency ν = 0.80 Hz. Shown is an orbit with period
one. (c) Phase diagram, autocorrelation function and Fast Fourier transform of the measured signals with a driving frequency
ν = 0.85 Hz. Depicted is an orbit with period two.

ERROR DISCUSSION

Due to the finite precision of the measurement devices
and adjustment instruments, e.g. the potentiometers it is
useful to calculate the propagation of uncertainty for the
determined Feigenbaum constant. The calculation of ∆δ
is given by

∆δ =
∑
i

∣∣∣∣ ∂δ∂xi
∣∣∣∣∆xi, (18)

and gives the total error. The relative errors ∆xi of the
quantities xi are given by the precision of the measure-
ment instruments. In our case xi corresponds to the
bifurcation values Ri→j in equation (17). For all three
bifurcation points we can assume an relative error of
∆Ri→j = 0.05 kΩ which corresponds to the precision of

the used potentiometers. We then find

∆δ = 3.09. (19)

The Feigenbaum constant is therefore given by

δ = 4.56± 3.09. (20)

Compared with the literature value δ = 4.6692 we are
within the total error limits. Furthermore the relative
error is about 2.34 %, which is nice.

SUMMARY

In the experimental task the different vibrational states
of an inverted pendulum were recorded and the Fourier
transform as well as the autocorrelation function deter-
mined and depicted in figure 4. As shown in the figure
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FIG. 6. Phase diagram of the Shinriki oscillator. Depicted is
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it was possible to investigate orbits of period one, two
and three. The resonance peaks are given in the Fourier
transformed signal.

The same observations were done in the case of the
Shinriki oscillator as depicted in figure 7. Moreover it was
possible to create a Feigenbaum diagram 5 and determine
the Feigenbaum constant to

δ = 4.56± 3.09. (21)

Compared to the literature value δ = 4.6692 this cor-
responds to a relative error of 2.34 %. Moreover it was
possible to observe a phase diagram 6 to identify the
different areas of vibrational states as function of the two
control parameters R1 and R2.
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FIG. 7. From left to right. Phase diagram, autocorrelation function and Fourier transform for: (a) Orbit of period one
with R1 = 16.0 kΩ, R2 = 18.6 kΩ. (b) Orbit of period two with R1 = 17.5 kΩ, R2 = 18.6 kΩ. (c) Orbit of period four with
R1 = 17.8 kΩ, R2 = 18.6 kΩ. (d) Mono- scroll chaos for R1 = 18.5 kΩ, R2 = 18.6 kΩ. (e) Orbit of period three with R1 = 18.6 kΩ,
R2 = 18.6 kΩ. (f) Orbit of period two with R1 = 28.8 kΩ, R2 = 18.6 kΩ. (g) Double-scroll chaos for R1 = 30.6 kΩ, R2 = 18.6 kΩ.
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