

Rydberg Quantum Simulation Ground State Preparation by Master Equation

Henri Menke - University of Stuttgart - January 29, 2015

Outline

1 Universal Quantum Simulation

2 Rydberg Quantum Simulation

3 Ground State Preparation by Master Equation

Outline

1 Universal Quantum Simulation

- Motivation
- Definition by Feynman and Lloyd

Strongly Correlated Electronic Systems

Hubbard Model

The Hamiltonian in second quantization reads

$$
H=-t \sum_{\langle i, j\rangle, \sigma} c_{i, \sigma}^{\dagger} c_{j, \sigma}+U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}
$$

- Problems in condensed matter physics

Strongly Correlated Electronic Systems

Hubbard Model

The Hamiltonian in second quantization reads

$$
H=-t \sum_{\langle i, j\rangle, \sigma} c_{i, \sigma}^{\dagger} c_{j, \sigma}+U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}
$$

- Problems in condensed matter physics

■ High- T_{c} superconductors, Magnets, etc.
■ Not analytically solvable
■ Numerically impossible for many particles

Problem

Exponential growth of the Hilbert space with the particle number.

Feynman's Answer ${ }^{\text {[Feys2; Llo66] }}$

- Current state of the art: 40 particles, 2^{40} variables
- 300 particles one would require 2^{300} variables, which is the number of particles in the universe.
\square
\square elements which obey quantum mechanical laws.

\square
the dynamics of other systems with short-range interactions.
- Digital Quantum Simulator: A Universal Quantum Simulator which advances in discrete time stens.

Feynman's Answer ${ }^{\text {[Fey82; Llo66] }}$

- Current state of the art: 40 particles, 2^{40} variables
- 300 particles one would require 2^{300} variables, which is the number of particles in the universe.

Simulating Physics with Computers

"Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws."

Feynman's Answer

- Current state of the art: 40 particles, 2^{40} variables
- 300 particles one would require 2^{300} variables, which is the number of particles in the universe.

Simulating Physics with Computers

"Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws."

■ Further elaborated by Lloyd: A Universal Quantum Simulator could simulate the dynamics of other systems with short-range interactions.

$$
\exp \left(\frac{\mathrm{i}}{\hbar} \mathcal{H} t\right) \approx \exp \left(\frac{\mathrm{i}}{\hbar} \mathcal{H}_{1} t\right) \exp \left(\frac{\mathrm{i}}{\hbar} \mathcal{H}_{2} t\right) \cdots \exp \left(\frac{\mathrm{i}}{\hbar} \mathcal{H}_{n} t\right)
$$

■ Digital Quantum Simulator: A Universal Quantum Simulator which advances in discrete time steps.

Outline

1 Universal Quantum Simulation

2 Rydberg Quantum Simulation
■ Why Rydberg Atoms?

- Mesoscopic CNOT Gate

3 Ground State Preparation by Master Equation

Rydberg Gates Revisited

■ Large dipole moment gives rise to strong Rydberg-Rydberg interaction

- The van der Waals coefficient of the repulsion scales like

$$
C_{6} \sim n^{11}
$$

- One atom can be excited into a Rydberg state, but a second one in the vicinity cannot

■ The Ryd-Ryd interaction shifts the Rydberg level of
 the second atom out of resonance

Rydberg Gates Revisited

■ Large dipole moment gives rise to strong Rydberg-Rydberg interaction

- The van der Waals coefficient of the repulsion scales like
- One atom can be excited into a Rydberg state, but a second one in the vicinity cannot

Rydberg Gates ${ }^{[W e i l i: ~ M u ̈ l l+09] ~}$

■ Common setup: Atoms trapped in deep optical lattice
■ Rydberg atoms possess long-range interactions

- Allows for large spacing and gives rise to better single-site addressability

Mesoscopic Gate

Coupling to many atoms in the vicinity allows to change the state of N atoms

$$
\mathrm{CNOT} \rightarrow \mathrm{CNOT}^{N}
$$

Rydberg Gates ${ }^{[W e i l o: ~ M u ̈ l l+09] ~}$

■ Common setup: Atoms trapped in deep optical lattice
■ Rydberg atoms possess long-range interactions

- Allows for large spacing and gives rise to better single-site addressability

Mesoscopic Gate

Coupling to many atoms in the vicinity allows to change the state of N atoms

$$
\mathrm{CNOT} \rightarrow \mathrm{CNOT}^{N}
$$

Principles of the CNOT Gate

- The CNOT gate flips the target qubit depending on the state of the control qubit

CNOT Mapping Rule

Let $|\alpha, \beta\rangle$ be a product of control and target qubit, where $\alpha \in\{0,1\}$ denotes the control and $\beta \in\{A, B\}$ the target qubit

$$
\begin{aligned}
\operatorname{CNOT}|0, A\rangle & =|0, A\rangle \\
\operatorname{CNOT}|1, A\rangle & =|1, B\rangle
\end{aligned}
$$

$$
\begin{array}{ll}
|0, A\rangle \rightarrow|0, A\rangle, & |1, A\rangle \rightarrow|1, B\rangle \\
|0, B\rangle \rightarrow|0, B\rangle, & |1, B\rangle \rightarrow|1, A\rangle
\end{array}
$$

Mesoscopic Rydberg Gate Based on EIT [Müll+09; Weilo]

■ To implement a mesoscopic CNOT gate we need to find a way to flip N qubits at once. Suppose $\left|A^{N}\right\rangle=\prod_{i}|A\rangle_{i}$

$$
\begin{aligned}
& \left|0, A^{N}\right\rangle \rightarrow\left|0, A^{N}\right\rangle, \quad\left|1, A^{N}\right\rangle \rightarrow\left|1, B^{N}\right\rangle \\
& \left|0, B^{N}\right\rangle \rightarrow\left|0, B^{N}\right\rangle, \quad\left|1, B^{N}\right\rangle \rightarrow\left|1, A^{N}\right\rangle
\end{aligned}
$$

- Independent of the actual number and position of the particles
- Properly pulsed laser light drives required transitions

Mesoscopic Rydberg Gate Based on EIT [Müll+09; Weilo]

- To implement a mesoscopic CNOT gate we need to find a way to flip N qubits at once. Suppose $\left|A^{N}\right\rangle=\prod_{i}|A\rangle_{i}$

$$
\begin{aligned}
& \left|0, A^{N}\right\rangle \rightarrow\left|0, A^{N}\right\rangle, \quad\left|1, A^{N}\right\rangle \rightarrow\left|1, B^{N}\right\rangle \\
& \left|0, B^{N}\right\rangle \rightarrow\left|0, B^{N}\right\rangle, \quad\left|1, B^{N}\right\rangle \rightarrow\left|1, A^{N}\right\rangle
\end{aligned}
$$

- Independent of the actual number and position of the particles

■ Properly pulsed laser light drives required transitions

CNOT Gate Operator

The gate operation is unitary, so it can be easily reversed

$$
U=|0\rangle\left\langle\left. 0\right|_{c} \otimes \mathbb{1}+\mid 1\right\rangle\left\langle\left. 1\right|_{c} \otimes \prod_{i=1}^{N} \sigma_{x}^{(i)}\right.
$$

Control qubit

Mesoscopic Rydberg Gate Based on EIT [Müll+09; Weilo]

- Control Atom in $|0\rangle$:

$$
\mathrm{CNOT}\left|0, A^{N}\right\rangle=\left|0, A^{N}\right\rangle
$$

- EIT condition fulfilled (target is transparent for Ω_{p})
- Raman transfer is blocked

Mesoscopic Rydberg Gate Based on EIT [Mülloo; Weilo]

■ Control Atom in $|0\rangle$:

$$
\mathrm{CNOT}\left|0, A^{N}\right\rangle=\left|0, A^{N}\right\rangle
$$

- EIT condition fulfilled (target is transparent for Ω_{p})
- Raman transfer is blocked
- Control Atom in $|1\rangle$:

$$
\mathrm{CNOT}\left|1, A^{N}\right\rangle=\left|1, B^{N}\right\rangle
$$

- EIT condition violated (Rydberg level shifted off resonance)
- Raman transfer is feasible

Mesoscopic Rydberg Gate Based on EIT

Many-Body Gate

We exploited long-range many-body Rydberg-Rydberg interactions to realise a many-body quantum gate

Can we reverse the process and

manv-hodv cuantum oate?

Ensemble qubit

Rydberg interaction

Mesoscopic Rydberg Gate Based on EIT [Müll+09; Weilo]

Many-Body Gate

We exploited long-range many-body Rydberg-Rydberg interactions to realise a many-body quantum gate

Many-Body Quantum Simulation

Can we reverse the process and simulate many-body interactions using a many-body quantum gate?

Control qubit

$8 / 21$

Outline

1 Universal Quantum Simulation

2 Rydberg Quantum Simulation

3 Ground State Preparation by Master Equation

- Simple Lattice Model
- Dissipative State Preparation
- Cooling into the Ground State
- Rydberg Setup
- Implementation of a Single Step
- More Interesting Systems

The Toric Code

- Spins are located on the edges of a two-dimensional lattice
- Two types of four-body interaction
- Plaquette terms $A_{p}=\prod_{i} \sigma_{x}^{(i)}$

is eigenstate of both stabilisers

The Toric Code

■ Spins are located on the edges of a two-dimensional lattice

- Two types of four-body interaction
- Plaquette terms $A_{p}=\prod_{i} \sigma_{x}^{(i)}$
- Star terms $B_{s}=\prod_{j} \sigma_{z}^{(j)}$

Toric Code Hamiltonian

Linear superposition of local interactions

$$
\mathcal{H}=-\sum_{i} A_{p}^{(i)}-\sum_{j} B_{s}^{(j)}
$$

- Global ground state $|\psi\rangle$ is eigenstate of both stabilisers

$$
A_{p}|\psi\rangle=|\psi\rangle, \quad B_{s}|\psi\rangle=|\psi\rangle
$$

Excitations of the Toric Code ${ }^{\text {[Weilo; Weit 11] }}$

- Violations of the stabiliser constraints are called excitations
- "Magnetic" excitation $A_{p}|m\rangle=-|m\rangle$
- "Charge" excitation $B_{s}|e\rangle=|e\rangle$

Intermezzo: Dissipative State Preparation

■ Dissipation is described by a coupling $V(t)$ to a heat bath

- Markovian evolution of the system

$$
\varrho(t)=V(t) \varrho(0)=\mathrm{e}^{\mathcal{L} t} \varrho(0)
$$

with the superoperator \mathcal{L}

Lindblad Master Equation
The evolution of the density matrix $\varrho(t)$ is given by a generalised Liouville-von-Neumann equation
with jump operators c_{i} and decay rates

Intermezzo: Dissipative State Preparation

■ Dissipation is described by a coupling $V(t)$ to a heat bath

- Markovian evolution of the system

$$
\varrho(t)=V(t) \varrho(0)=\mathrm{e}^{\mathcal{L} t} \varrho(0)
$$

with the superoperator \mathcal{L}

Lindblad Master Equation

The evolution of the density matrix $\varrho(t)$ is given by a generalised Liouville-von-Neumann equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho=-\frac{\mathrm{i}}{\hbar}[\mathcal{H}, \varrho]+\sum_{i} \gamma_{i}\left(c_{i} \varrho c_{i}^{\dagger}-\frac{1}{2}\left\{c_{i}^{\dagger} c_{i}, \varrho\right\}\right)
$$

with jump operators c_{i} and decay rates γ_{i}.

Dark States

Definition: Dark State

Here we define a dark state to be a state for which all coupling to the reservoir vanishes

$$
c_{i}|D\rangle=0
$$

- The dark state is now a stationary state of the system and a trivial solution to the master equation is

$$
\begin{gathered}
\varrho=|D\rangle\langle D| \\
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho=-\frac{\mathrm{i}}{\hbar}(\mathcal{H}|D\rangle\langle D|-|D\rangle\langle D| \mathcal{H}) \\
\quad+\sum_{i} \gamma_{i}\left[c_{i}|D\rangle\langle D| c_{i}^{\dagger}-\frac{1}{2}\left(c_{i}^{\dagger} c_{i}|D\rangle\langle D|+|D\rangle\langle D| c_{i}^{\dagger} c_{i}\right)\right]
\end{gathered}
$$

- Contrive a jump operator with the properties
- The dark state is the ground state
- The system cools itself into the ground state

State Preparation of the Toric Code

- Review: Toric Code Hamiltonian

$$
\mathcal{H}=-\sum_{i} A_{p}^{(i)}-\sum_{j} B_{s}^{(j)}
$$

- Jump operator for the magnetic
excitations

$$
c_{p}=\frac{1}{2} \sigma_{z}^{(i)}\left(1-A_{p}\right)
$$

- The ground state is a dark state, i.e.

$$
c_{p}|\psi\rangle=0
$$

- The jump operator cools any density matrix into the unique ground state

\qquad

State Preparation of the Toric Code

- Review: Toric Code Hamiltonian

$$
\mathcal{H}=-\sum_{i} A_{p}^{(i)}-\sum_{j} B_{s}^{(j)}
$$

■ Jump operator for the magnetic excitations

$$
c_{p}=\frac{1}{2} \sigma_{z}^{(i)}\left(1-A_{p}\right)
$$

■ The ground state is a dark state, i.e.

$$
c_{p}|\psi\rangle=0
$$

- The jump operator cools any density matrix into the unique ground state by
- diffusion of excitations
- annihilation of identical
 excitations

The Toric Code with Rydberg Atoms

- Rydberg atoms in a large-spacing optical lattice
- Control atoms placed in the middle of plaquettes
- Recent developments:
- Rydberg blockade between two atoms Group of M. Saffman: E. Urban et al. Nature Physics 5, 2 (2009), pp. 110-114
- Selective excitation based on the Rydberg Blockade Group of P. Grangier: A. Gaëtan et al. Nature Physics 5, 2 (2009), pp. 115-118

Quantum Simulation with Ultra Cold Ions

- Quantum simulation with five trapped ions
J. T. Barreiro et al. Nature 470, 7335 (2011), pp. 486-491
- Minimal instance of Toric Code stabiliser

■ Implements dissipative dynamics through optical pumping

- Proof of concept, the
- For efficient quantum simulation we need $n \sim 100$ ions

Quantum Simulation with Ultra Cold Ions

- Quantum simulation with five trapped ions
J. T. Barreiro et al. Nature 470, 7335 (2011), pp. 486-491

■ Minimal instance of Toric Code stabiliser

- Implements dissipative dynamics through optical pumping

- Proof of concept, the experiment is not scalable

■ For efficient quantum simulation we need $n \sim 100$ ions

Single Time Step
 [Wei10; Wei+11; Wei+10]

- Because interactions are local we can focus on single plaquette

$$
\mathcal{H}=A_{p}=\sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)}
$$

entangles the control and the target atom
controlled spin flip on one ensemble atom
reverses the entanglement of control and target atom

$16 / 21$

Single Time Step

- Because interactions are local we can focus on single plaquette

$$
\mathcal{H}=A_{p}=\sigma_{x}^{(1)} \sigma_{x}^{(2)} \sigma_{x}^{(3)} \sigma_{x}^{(4)}
$$

■ Gate sequence for the simulation consists of four steps:

- G entangles the control and the target atom
- $\mathrm{e}^{-\mathrm{i} \phi \sigma_{z}}$ is the coherent evolution of the control atom, $U(\theta)$ is a controlled spin flip on one ensemble atom
- G^{-1} reverses the entanglement of control and target atom
- Optical pumping of the control atom back to $|0\rangle_{c}$ introduces dissipation

Single Time Step

- G is a three step process
- $U_{c}=\exp \left(-\mathrm{i} \pi \sigma_{y} / 4\right)$ is the standard $\pi / 2$ qubit rotation.
- U_{g} maps the eigenstate of the ensemble atoms onto the control atom

$$
U_{g}=|0\rangle\left\langle\left. 0\right|_{c} \otimes \mathbb{1}+\mid 1\right\rangle\left\langle\left. 1\right|_{c} \otimes \prod_{i=1}^{N} \sigma_{x}^{(i)}\right.
$$

- $U_{c}^{-1}=\exp \left(\mathrm{i} \pi \sigma_{y} / 4\right)$ reverses the rotation

Single Time Step

- G maps the internal state of the ensemble atoms on the control atom
$G|0\rangle_{c} \otimes|\lambda,+\rangle \rightarrow|0\rangle_{c} \otimes|\lambda,+\rangle$
$G|0\rangle_{c} \otimes|\lambda,-\rangle \rightarrow|1\rangle_{c} \otimes|\lambda,-\rangle$
$|\lambda, \pm\rangle$ is eigenstate of the interaction $A_{p}=\prod_{i} \sigma_{x}^{(i)}$ with eigenvalue ± 1

Single Time Step

- G maps the internal state of the ensemble atoms on the control atom
$G|0\rangle_{c} \otimes|\lambda,+\rangle \rightarrow|0\rangle_{c} \otimes|\lambda,+\rangle$
$G|0\rangle_{c} \otimes|\lambda,-\rangle \rightarrow|1\rangle_{c} \otimes|\lambda,-\rangle$
$|\lambda, \pm\rangle$ is eigenstate of the interaction $A_{p}=\prod_{i} \sigma_{x}^{(i)}$ with eigenvalue ± 1
- Phase rotation on the control atom and applying G^{-1} is equivalent to the many-body interaction A_{p}

$$
\exp \left(-\mathrm{i} \phi A_{p}\right)=G^{-1} \exp \left(-\mathrm{i} \phi \sigma_{z}^{(c)}\right) G
$$

Single Time Step

- G maps the internal state of the ensemble atoms on the control atom
$G|0\rangle_{c} \otimes|\lambda,+\rangle \rightarrow|0\rangle_{c} \otimes|\lambda,+\rangle$
$G|0\rangle_{c} \otimes|\lambda,-\rangle \rightarrow|1\rangle_{c} \otimes|\lambda,-\rangle$
$|\lambda, \pm\rangle$ is eigenstate of the interaction $A_{p}=\prod_{i} \sigma_{x}^{(i)}$ with eigenvalue ± 1
- Phase rotation on the control atom and applying G^{-1} is equivalent to the many-body interaction A_{p}

$$
\exp \left(-\mathrm{i} \phi A_{p}\right)=G^{-1} \exp \left(-\mathrm{i} \phi \sigma_{z}^{(c)}\right) G
$$

- Controlled spin flip onto one of the ensemble atoms
$U_{i}(\theta)=|0\rangle\left\langle\left. 0\right|_{c} \otimes \mathbb{1}+\mid 1\right\rangle\left\langle\left. 1\right|_{c} \otimes \exp \left(\mathrm{i} \theta \sigma_{z}^{(i)}\right)\right.$
Leaves $|\lambda,+\rangle$ invariant

Cooling to the Ground State

- Controlled spin flip onto one of the ensemble atoms

$$
U_{i}(\theta)=|0\rangle\left\langle\left. 0\right|_{c} \otimes \mathbb{1}+\mid 1\right\rangle\left\langle\left. 1\right|_{c} \otimes \exp \left(\mathrm{i} \theta \sigma_{z}^{(i)}\right)\right.
$$

If a flip occurs the control atom is not mapped back to $|0\rangle_{c}$

- Entanglement is not reversed and whole system evolves according to

$$
\partial_{t} \varrho=\gamma\left(c_{i} \varrho c_{i}^{\dagger}-\frac{1}{2}\left\{c_{i}^{\dagger} c_{i}, \varrho\right\}\right)+\mathcal{O}\left(\theta^{3}\right)
$$

- Each spin flip moves excitation to adjacent plaquette. For $\theta=\pi$ move takes place with unity probability, i.e. fastest cooling
- Picture: Numerical simulation with 32 particles

Fermi-Hubbard Model in 2D ${ }^{\text {[Weilo; Weit } 11]}$

What now about the Hubbard model?

Fermi-Hubbard Model in 2D ${ }^{\text {[Weilo: Weit } 11]}$

What now about the Hubbard model? Well...

$$
\begin{aligned}
H= & -t \sum_{i, j, \sigma}\left(\sigma_{i, j, \sigma}^{x} \sigma_{i+1, j, \sigma}^{x}+\sigma_{i, j, \sigma}^{y} \sigma_{i+1, j, \sigma}^{y}\right) \sigma_{i^{\prime}, j^{\prime}, \sigma}^{z}+t \sum_{i, j, \sigma}\left(\sigma_{2 i, j, \sigma}^{x} \sigma_{2 i, j+1, \sigma}^{x}+\sigma_{2 i, j, \sigma}^{y}\right. \\
& +t \sum_{i, j, \sigma}\left(\sigma_{2 i+1, j, \sigma}^{x} \sigma_{2 i+1, j+1, \sigma}^{x}+\sigma_{2 i+1, j, \sigma}^{y} \sigma_{2 i+1, j+1, \sigma}^{y}\right)(-1)^{j+1} \sigma_{2 i^{\prime}+1, j^{\prime}, \sigma}^{x} \sigma_{2 i^{\prime}+1, j^{\prime}}^{y} \\
& +V \sum_{i, j, \sigma} \sigma_{2 i, 2 j, \sigma}^{z} \sigma_{2 i+1,2 j+1, \sigma}^{z} \sigma_{2 i^{\prime}, 2 j^{\prime}, \sigma}^{x} \sigma_{2 i^{\prime}+1,2 j^{\prime}, \sigma}^{x} \sigma_{2 i^{\prime}+1,2 j^{\prime}, \sigma}^{x} \sigma_{2 i^{\prime}+1,2 j^{\prime}+1, \sigma}^{x} \\
& +V \sum_{i, j, \sigma} \sigma_{2 i+1,2 j+1, \sigma}^{z} \sigma_{2 i, 2 j+2, \sigma}^{z} \sigma_{2 i^{\prime}, 2 j^{\prime}+1, \sigma}^{x} \sigma_{2 i^{\prime}+1,2 j^{\prime}+1, \sigma}^{x} \sigma_{2 i^{\prime}, 2 j^{\prime}+2, \sigma}^{x} \sigma_{2 i^{\prime}+1,2 j^{\prime}+2, \sigma}^{x} \\
& +V \sum_{i, j, \sigma} \sigma_{2 i+1,2 j, \sigma}^{z} \sigma_{2 i+2,2 j+1, \sigma}^{z} \sigma_{2 i^{\prime}+1,2 j^{\prime}, \sigma}^{y} \sigma_{2 i^{\prime}+2,2 j^{\prime}, \sigma}^{y} \sigma_{2 i^{\prime}+1,2 j^{\prime}+1, \sigma}^{y} \sigma_{2 i^{\prime}+2,2 j^{\prime}+1, \sigma}^{y} \\
& +V \sum_{i, j, \sigma} \sigma_{2 i+1,2 j+2, \sigma}^{z} \sigma_{2 i+2,2 j+1, \sigma}^{z} \sigma_{2 i^{\prime}+1,2 j^{\prime}+1, \sigma}^{y} \sigma_{2 i^{\prime}+2,2 j^{\prime}+1, \sigma}^{y} \sigma_{2 i^{\prime}+1,2 j^{\prime}+2, \sigma}^{y} \sigma_{2 i^{\prime}+2}^{y}
\end{aligned}
$$

H. Weimer et al. Quantum Information Processing 10, 6 (2011), pp. 885-906

Summary

What You Should Remember

What You Should Remember

- Simulating quantum mechanics on a computer is exponentially hard
- Many-body gates can be used to simulate many-body interactions

■ Rydberg atoms are very suitable, because the interactions are long range and allow for single-site addressability

■ Dissipative preparation of ground states

- Implementation of complex spin systems
- Toric code can be set up such that it is self correcting

Acknowledgement

ITP3
Przemyslaw Bienias

ITP1

Marcel Klett Holger Cartarius

PI5

Harald Kübler

References \& Further Reading

```
[Bar+11] J. T. Barreiro et al. Nature 470, 7335 (2011), pp. 486-491.
[BP06] H. P. Breuer and F. Petruccione. The theory of open quantum systems. 1st ed.
    Oxford University Press, 2006.
[Fey82] R. P. Feynman. Int. J. Theo. Phys. 21, 6/7 (1982), pp. 467-488.
[Gaë+09] A. Gaëtan et al. Nature Physics 5, 2 (2009), pp. 115-118.
[Llo96] S. Lloyd. Science 273 (1996), pp. 1073-1078.
[Mül+09] M. Müller et al. Phys. Rev. Lett. 102, }17\mathrm{ (2009), p. }170502
[Sei14] U. Seifert. "Quantenmechanik 2". Lecture. 2014.
[Urb+09] E. Urban et al. Nature Physics 5, 2 (2009), pp. 110-114.
[Wei+10] H. Weimer et al. Nature Physics 6, 5 (2010), pp. 382-388.
[Wei+11] H. Weimer et al. Quantum Information Processing 10, }6\mathrm{ (2011), pp. 885-906.
[Wei10] H. Weimer. "Quantum many-body physics with strongly interacting Rydberg atoms".
    PhD thesis. 2010.
```


Appendix: Time Scales of the Gate

Numbers for ${ }^{87} \mathrm{Rb}$ for a gate fidelity of 99% :

$$
\begin{aligned}
& \tau_{|r\rangle}^{(c)}=66 \mu \mathrm{~s} \\
& T=0.44 \mu \mathrm{~s} \\
& V_{c e}=10 \Omega_{c}^{2} / \Delta \approx 56.3 \mathrm{GHz} \\
& \Delta=2 \pi \times 1.2 \mathrm{GHz} \\
& \Omega_{c}=6 \Omega_{p} \approx 2.6 \mathrm{GHz}
\end{aligned}
$$

Appendix: Decay of a Two-Level System

Reminder: Lindblad Master Equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho=-\frac{\mathrm{i}}{\hbar}[\mathcal{H}, \varrho]+\sum_{i=1}^{N^{2}-1} \gamma_{i}\left(c_{i} \varrho c_{i}^{\dagger}-\frac{1}{2}\left\{c_{i}^{\dagger} c_{i}, \varrho\right\}\right)
$$

- Two-Level System

$$
\begin{array}{ccc}
\mathcal{H}=\frac{\hbar \omega_{0}}{2} \sigma_{z} \\
c_{1}=\sigma_{+}, & \gamma_{1}=\gamma_{+} & \\
c_{2}=\sigma_{-}, & \gamma_{2}=\gamma_{-} & \sigma_{+}=|e\rangle\langle g|=\sigma_{x}+\mathrm{i} \sigma_{y} \\
c_{3}=\sigma_{z}, & \gamma_{3}=\gamma_{z} & \sigma_{-}=|g\rangle\langle e|=\sigma_{x}-\mathrm{i} \sigma_{y}
\end{array}
$$

Appendix: Decay of a Two-Level System ${ }^{[B P 06 ; ~ S e i l 4]}$ II

- Master Equation

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \varrho=-\frac{\mathrm{i} \omega_{0}}{2}\left(\sigma_{z} \varrho-\varrho \sigma_{z}\right)+\gamma_{+} & \left(\sigma_{+} \varrho \sigma_{-}-\frac{1}{2} \sigma_{-} \sigma_{+} \varrho-\frac{1}{2} \varrho \sigma_{-} \sigma_{+}\right) \\
+\gamma_{-}\left(\sigma_{-} \varrho \sigma_{+}\right. & \left.-\frac{1}{2} \sigma_{+} \sigma_{-} \varrho-\frac{1}{2} \varrho \sigma_{+} \sigma_{-}\right) \\
& +\gamma_{z}\left(\sigma_{z} \varrho \sigma_{z}-\frac{1}{2} \sigma_{z} \sigma_{z} \varrho-\frac{1}{2} \varrho \sigma_{z} \sigma_{z}\right) \tag{*}
\end{align*}
$$

- Time evolution of matrix elements

$$
\begin{aligned}
\langle e|(*)|e\rangle: & \frac{\mathrm{d}}{\mathrm{~d} t} \varrho_{e e} & =\gamma_{+} \varrho_{g g}-\gamma_{-} \varrho_{e e} \\
\langle g|(*)|g\rangle: & \frac{\mathrm{d}}{\mathrm{~d} t} \varrho_{g g} & =-\gamma_{+} \varrho_{g g}+\gamma_{-} \varrho_{e e}
\end{aligned}
$$

Appendix: Decay of a Two-Level System

- Solution of the differential equations

- Calculating the coherences $\langle e|(*)|g\rangle$ and $\langle g|(*)|e\rangle$ allows to derive the principle of detailed balance.

