Hauptseminar: Rydberg Physics

Rydberg Quantum Simulation Ground State Preparation by Master Equation

Henri Menke — University of Stuttgart — January 29, 2015

- **1** Universal Quantum Simulation
- 2 Rydberg Quantum Simulation
- **3** Ground State Preparation by Master Equation

Outline

1 Universal Quantum Simulation

- Motivation
- Definition by Feynman and Lloyd
- 2 Rydberg Quantum Simulation

B Ground State Preparation by Master Equation

Strongly Correlated Electronic Systems

Hubbard Model

The Hamiltonian in second quantization reads

$$H = -t \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

- Problems in condensed matter physics
- High- T_c superconductors, Magnets, etc.
- Not analytically solvable
- Numerically impossible for many particles

Problem

Exponential growth of the Hilbert space with the particle number.

Strongly Correlated Electronic Systems

Hubbard Model

The Hamiltonian in second quantization reads

$$H = -t \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

- Problems in condensed matter physics
- High- T_c superconductors, Magnets, etc.
- Not analytically solvable
- Numerically impossible for many particles

Problem

Exponential growth of the Hilbert space with the particle number.

Feynman's Answer [Fey82; Llo96]

- Current state of the art: 40 particles, 2⁴⁰ variables
- 300 particles one would require 2³⁰⁰ variables, which is the number of particles in the universe.

Simulating Physics with Computers

"Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws."

Further elaborated by Lloyd: A Universal Quantum Simulator could simulate the dynamics of other systems with short-range interactions.

$$\exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}t\right) \approx \exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}_{1}t\right)\exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}_{2}t\right)\cdots\exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}_{n}t\right)$$

 Digital Quantum Simulator: A Universal Quantum Simulator which advances in discrete time steps.

Feynman's Answer [Fey82; Llo96]

- Current state of the art: 40 particles, 2⁴⁰ variables
- 300 particles one would require 2³⁰⁰ variables, which is the number of particles in the universe.

Simulating Physics with Computers

"Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws."

Further elaborated by Lloyd: A Universal Quantum Simulator could simulate the dynamics of other systems with short-range interactions.

$$\exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}t\right) \approx \exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}_{1}t\right)\exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}_{2}t\right)\cdots\exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}_{n}t\right)$$

 Digital Quantum Simulator: A Universal Quantum Simulator which advances in discrete time steps.

Feynman's Answer [Fey82; Llo96]

- Current state of the art: 40 particles, 2⁴⁰ variables
- 300 particles one would require 2³⁰⁰ variables, which is the number of particles in the universe.

Simulating Physics with Computers

"Let the computer itself be built of quantum mechanical elements which obey quantum mechanical laws."

Further elaborated by Lloyd: A Universal Quantum Simulator could simulate the dynamics of other systems with short-range interactions.

$$\exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}t\right) \approx \exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}_{1}t\right) \exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}_{2}t\right) \cdots \exp\left(\frac{\mathrm{i}}{\hbar}\mathcal{H}_{n}t\right)$$

 Digital Quantum Simulator: A Universal Quantum Simulator which advances in discrete time steps.

Outline

Universal Quantum Simulation

2 Rydberg Quantum Simulation

- Why Rydberg Atoms?
- Mesoscopic CNOT Gate

G Ground State Preparation by Master Equation

Rydberg interaction

Rydberg Gates Revisited [Urb+09]

- Large dipole moment gives rise to strong Rydberg-Rydberg interaction
- The van der Waals coefficient of the repulsion scales like

 The Ryd-Ryd interaction shifts the Rydberg level of the second atom out of resonance

Rydberg Gates Revisited [Urb+09]

- Large dipole moment gives rise to strong Rydberg-Rydberg interaction
- The van der Waals coefficient of the repulsion scales like

- One atom can be excited into a Rydberg state, but a second one in the vicinity cannot
- The Ryd-Ryd interaction shifts the Rydberg level of the second atom out of resonance

 \hookrightarrow talk by Niklas

Rydberg Gates [Wei10; Mül+09]

- Common setup: Atoms trapped in deep optical lattice
- Rydberg atoms possess long-range interactions
- Allows for large spacing and gives rise to better single-site addressability

Mesoscopic Gate

Coupling to many atoms in the vicinity allows to change the state of N atoms

 $\text{CNOT} \to \text{CNOT}^N$

Rydberg Gates [Wei10; Mül+09]

- Common setup: Atoms trapped in deep optical lattice
- Rydberg atoms possess long-range interactions
- Allows for large spacing and gives rise to better single-site addressability

Mesoscopic Gate

Coupling to many atoms in the vicinity allows to change the state of N atoms

 $\text{CNOT} \to \text{CNOT}^N$

Principles of the CNOT Gate

The CNOT gate flips the target qubit depending on the state of the control qubit

CNOT Mapping Rule

Let $|\alpha, \beta\rangle$ be a product of control and target qubit, where $\alpha \in \{0, 1\}$ denotes the control and $\beta \in \{A, B\}$ the target qubit

 $\begin{array}{l} \text{CNOT} \left| 0, A \right\rangle = \left| 0, A \right\rangle \\ \text{CNOT} \left| 1, A \right\rangle = \left| 1, B \right\rangle \end{array}$

$$\begin{split} |0,A\rangle &\to |0,A\rangle \,, \quad |1,A\rangle \to |1,B\rangle \\ |0,B\rangle &\to |0,B\rangle \,, \quad |1,B\rangle \to |1,A\rangle \end{split}$$

■ To implement a mesoscopic CNOT gate we need to find a way to flip N qubits at once. Suppose $|A^N\rangle = \prod_i |A\rangle_i$

$$\begin{split} |0,A^N\rangle &\to |0,A^N\rangle\,, \quad |1,A^N\rangle \to |1,B^N\rangle \\ |0,B^N\rangle &\to |0,B^N\rangle\,, \quad |1,B^N\rangle \to |1,A^N\rangle \end{split}$$

- Independent of the actual number and position of the particles
- Properly pulsed laser light drives required transitions

■ To implement a mesoscopic CNOT gate we need to find a way to flip N qubits at once. Suppose $|A^N\rangle = \prod_i |A\rangle_i$

$$\begin{split} |0,A^N\rangle &\to |0,A^N\rangle \,, \quad |1,A^N\rangle \to |1,B^N\rangle \\ |0,B^N\rangle &\to |0,B^N\rangle \,, \quad |1,B^N\rangle \to |1,A^N\rangle \end{split}$$

- Independent of the actual number and position of the particles
- Properly pulsed laser light drives required transitions

 $|B\rangle$

 Ω_c

Many-Body Gate

We exploited long-range many-body Rydberg-Rydberg interactions to realise a many-body quantum gate

Many-Body Quantum Simulation

Can we reverse the process and simulate many-body interactions using a many-body quantum gate?

Many-Body Gate

We exploited long-range many-body Rydberg-Rydberg interactions to realise a many-body quantum gate

Many-Body Quantum Simulation

Can we reverse the process and simulate many-body interactions using a many-body quantum gate?

Outline

Universal Quantum Simulation

2 Rydberg Quantum Simulation

3 Ground State Preparation by Master Equation

- Simple Lattice Model
- Dissipative State Preparation
- Cooling into the Ground State
- Rydberg Setup
- Implementation of a Single Step
- More Interesting Systems

The Toric Code $\space{[Wei10; Wei+11]}$

Spins are located on the edges of a two-dimensional lattice

 \blacksquare Global ground state $|\psi
angle$ is eigenstate of both stabilisers

 $A_p \ket{\psi} = \ket{\psi} , \quad B_s \ket{\psi} = \ket{\psi}$

The Toric Code [Wei10; Wei+11]

Spins are located on the edges of a two-dimensional lattice

 \blacksquare Global ground state $|\psi\rangle$ is eigenstate of both stabilisers

$$A_p |\psi\rangle = |\psi\rangle$$
, $B_s |\psi\rangle = |\psi\rangle$

Excitations of the Toric Code [Wei10; Wei+11]

Violations of the stabiliser constraints are called excitations

• "Magnetic" excitation
$$A_p |m\rangle = -|m\rangle$$

• "Charge" excitation
$$B_s |e\rangle = |e\rangle$$

Intermezzo: Dissipative State Preparation [BP06; Sei14]

Dissipation is described by a coupling V(t) to a heat bath

Markovian evolution of the system

$$\varrho(t) = V(t)\varrho(0) = \mathrm{e}^{\mathcal{L}t}\varrho(0)$$

with the superoperator ${\cal L}$

Lindblad Master Equation

The evolution of the density matrix $\varrho(t)$ is given by a generalised Liouville-von-Neumann equation

$$rac{\mathrm{d}}{\mathrm{d}t}arrho = -rac{\mathrm{i}}{\hbar}[\mathcal{H},arrho] + \sum_i \gamma_i \left(c_i arrho c_i^\dagger - rac{1}{2} \{c_i^\dagger c_i, arrho\}
ight)$$

with jump operators c_i and decay rates γ_i .

Intermezzo: Dissipative State Preparation [BP06; Sei14]

Dissipation is described by a coupling V(t) to a heat bath

Markovian evolution of the system

$$\varrho(t) = V(t)\varrho(0) = e^{\mathcal{L}t}\varrho(0)$$

with the superoperator $\boldsymbol{\mathcal{L}}$

Lindblad Master Equation

The evolution of the density matrix $\varrho(t)$ is given by a generalised Liouville-von-Neumann equation

$$rac{\mathrm{d}}{\mathrm{d}t}arrho = -rac{\mathrm{i}}{\hbar}[\mathcal{H},arrho] + \sum_i \gamma_i \left(c_i arrho c_i^\dagger - rac{1}{2}\{c_i^\dagger c_i, arrho\}
ight)$$

with jump operators c_i and decay rates γ_i .

Dark States [BP06]

Definition: Dark State

Here we define a $\displaystyle {\sf dark} \ {\sf state}$ to be a state for which all coupling to the reservoir vanishes

$$c_i \left| D \right\rangle = 0$$

The dark state is now a stationary state of the system and a trivial solution to the master equation is

$$\varrho = |D\rangle \langle D|$$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\varrho &= -\frac{\mathrm{i}}{\hbar} \Big(\mathcal{H} \left| D \right\rangle \langle D \right| - \left| D \right\rangle \langle D \right| \mathcal{H} \Big) \\ &+ \sum_{i} \gamma_{i} \left[c_{i} \left| D \right\rangle \langle D \right| c_{i}^{\dagger} - \frac{1}{2} \left(c_{i}^{\dagger} c_{i} \left| D \right\rangle \langle D \right| + \left| D \right\rangle \langle D \right| c_{i}^{\dagger} c_{i} \Big) \right] \end{split}$$

Contrive a jump operator with the properties

- The dark state is the ground state
- The system cools itself into the ground state

State Preparation of the Toric Code [Weil0; Wei+11]

Review: Toric Code Hamiltonian

$$\mathcal{H} = -\sum_{i} A_p^{(i)} - \sum_{j} B_s^{(j)}$$

Jump operator for the magnetic excitations

$$c_p = \frac{1}{2}\sigma_z^{(i)}(1 - A_p)$$

The ground state is a dark state, i.e.

$$c_p \left| \psi \right\rangle = 0$$

- The jump operator cools any density matrix into the unique ground state by
 - diffusion of excitations
 - annihilation of identical excitations

State Preparation of the Toric Code [Weil0; Wei+11]

Review: Toric Code Hamiltonian

$$\mathcal{H} = -\sum_{i} A_p^{(i)} - \sum_{j} B_s^{(j)}$$

 Jump operator for the magnetic excitations

$$c_p = \frac{1}{2}\sigma_z^{(i)}(1 - A_p)$$

The ground state is a dark state, i.e.

$$c_p \left| \psi \right\rangle = 0$$

- The jump operator cools any density matrix into the unique ground state by
 - diffusion of excitations
 - annihilation of identical excitations

The Toric Code with Rydberg Atoms ^[Wei10; Wei+11]

- Rydberg atoms in a large-spacing optical lattice
- Control atoms placed in the middle of plaquettes
- Recent developments:
 - Rydberg blockade between two atoms Group of M. Saffman: E. Urban et al. Nature Physics 5, 2 (2009), pp. 110–114
 - Selective excitation based on the Rydberg Blockade
 Group of P. Grangier: A. Gaëtan et al.
 Nature Physics 5, 2 (2009), pp. 115–118

Quantum Simulation with Ultra Cold Ions [Bar+11]

- Quantum simulation with five trapped ions
 - J. T. Barreiro et al. Nature 470, 7335 (2011), pp. 486-491
- Minimal instance of Toric Code stabiliser
- Implements dissipative dynamics through optical pumping

Proof of concept, the experiment is not scalable
 For efficient quantum simulation we need n ~ 100 io

Quantum Simulation with Ultra Cold Ions [Bar+11]

- Quantum simulation with five trapped ions
 - J. T. Barreiro et al. Nature 470, 7335 (2011), pp. 486-491
- Minimal instance of Toric Code stabiliser
- Implements dissipative dynamics through optical pumping

- Proof of concept, the experiment is not scalable
- \blacksquare For efficient quantum simulation we need $n\sim 100$ ions

Single Time Step [Wei10; Wei+11; Wei+10]

Because interactions are local we can focus on single plaquette

$$\mathcal{H} = A_p = \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$

Gate sequence for the simulation consists of four steps:

- G entangles the control and the target atom
- $e^{-i\phi\sigma_z}$ is the coherent evolution of the control atom, $U(\theta)$ is a controlled spin flip on one ensemble atom
- lacksquare G^{-1} reverses the entanglement of control and target atom
- Optical pumping of the control atom back to $|0\rangle_c$ introduces dissipation

Single Time Step [Wei10; Wei+11; Wei+10]

Because interactions are local we can focus on single plaquette

$$\mathcal{H} = A_p = \sigma_x^{(1)} \sigma_x^{(2)} \sigma_x^{(3)} \sigma_x^{(4)}$$

■ Gate sequence for the simulation consists of four steps:

- \blacksquare G entangles the control and the target atom
- $e^{-i\phi\sigma_z}$ is the coherent evolution of the control atom, $U(\theta)$ is a controlled spin flip on one ensemble atom
- G^{-1} reverses the entanglement of control and target atom
- \blacksquare Optical pumping of the control atom back to $|0\rangle_c$ introduces dissipation

Single Time Step [Wei10; Wei+11; Wei+10]

 $\blacksquare~G$ is a three step process

- $U_c = \exp(-i\pi\sigma_y/4)$ is the standard $\pi/2$ qubit rotation.
- $\blacksquare \ U_g$ maps the eigenstate of the ensemble atoms onto the control atom

$$U_g = |0
angle \langle 0|_c \otimes 1\!\!1 + |1
angle \langle 1|_c \otimes \prod_{i=1}^N \sigma_x^{(i)}$$

• $U_c^{-1} = \exp(\mathrm{i}\pi\sigma_y/4)$ reverses the rotation

Single Time Step

[Wei10; Wei+11; Wei+10]

■ *G* maps the internal state of the ensemble atoms on the control atom

$$\begin{split} &G \left| 0 \right\rangle_c \otimes \left| \lambda, + \right\rangle \to \left| 0 \right\rangle_c \otimes \left| \lambda, + \right\rangle \\ &G \left| 0 \right\rangle_c \otimes \left| \lambda, - \right\rangle \to \left| 1 \right\rangle_c \otimes \left| \lambda, - \right\rangle \\ &\left| \lambda, \pm \right\rangle \text{ is eigenstate of the} \end{split}$$

interaction $A_p = \prod_i \sigma_x^{(i)}$ with eigenvalue ± 1

Phase rotation on the control atom and applying G^{-1} is equivalent to the many-body interaction A_p

 $\exp(-\mathrm{i}\phi A_p) = G^{-1}\exp(-\mathrm{i}\phi\sigma_z^{(c)})G$

• Controlled spin flip onto one of the ensemble atoms

$$\begin{split} U_i(\theta) &= |0\rangle \langle 0|_c \otimes \mathbb{1} + |1\rangle \langle 1|_c \otimes \exp(\mathrm{i}\theta \sigma_z^{(i)}) \\ \text{Leaves } |\lambda, +\rangle \text{ invariant} \end{split}$$

Single Time Step

[Wei10; Wei+11; Wei+10]

■ *G* maps the internal state of the ensemble atoms on the control atom

 $\begin{array}{l} G \left| 0 \right\rangle_c \otimes \left| \lambda, + \right\rangle \to \left| 0 \right\rangle_c \otimes \left| \lambda, + \right\rangle \\ G \left| 0 \right\rangle_c \otimes \left| \lambda, - \right\rangle \to \left| 1 \right\rangle_c \otimes \left| \lambda, - \right\rangle \end{array}$

 $|\lambda,\pm\rangle$ is eigenstate of the interaction $A_p=\prod_i\sigma_x^{(i)}$ with eigenvalue ± 1

Phase rotation on the control atom and applying G⁻¹ is equivalent to the many-body interaction A_p

 $\exp(-\mathrm{i}\phi A_p) = G^{-1}\exp(-\mathrm{i}\phi\sigma_z^{(c)})\,G$

Controlled spin flip onto one of the ensemble atoms $U_i(\theta) = |0\rangle \langle 0|_c \otimes 1 + |1\rangle \langle 1|_c \otimes \exp(i\theta\sigma)$

Single Time Step

[Wei10; Wei+11; Wei+10]

■ *G* maps the internal state of the ensemble atoms on the control atom

 $\begin{array}{l} G \left| 0 \right\rangle_c \otimes \left| \lambda, + \right\rangle \to \left| 0 \right\rangle_c \otimes \left| \lambda, + \right\rangle \\ G \left| 0 \right\rangle_c \otimes \left| \lambda, - \right\rangle \to \left| 1 \right\rangle_c \otimes \left| \lambda, - \right\rangle \end{array}$

 $|\lambda,\pm\rangle$ is eigenstate of the interaction $A_p=\prod_i\sigma_x^{(i)}$ with eigenvalue ± 1

■ Phase rotation on the control atom and applying G⁻¹ is equivalent to the many-body interaction A_p

 $\exp(-\mathrm{i}\phi A_p) = G^{-1}\exp(-\mathrm{i}\phi\sigma_z^{(c)}) G$

 Controlled spin flip onto one of the ensemble atoms

$$\begin{split} U_i(\theta) &= |0\rangle \langle 0|_c \otimes 1\!\!1 + |1\rangle \langle 1|_c \otimes \exp(\mathrm{i}\theta \sigma_z^{(i)}) \\ \text{Leaves } |\lambda, +\rangle \text{ invariant} \end{split}$$

Cooling to the Ground State [Wei10; Wei+11; Wei+10]

Controlled spin flip onto one of the ensemble atoms

$$U_{i}(\theta) = |0\rangle \langle 0|_{c} \otimes \mathbb{1} + |1\rangle \langle 1|_{c} \otimes \exp(\mathrm{i}\theta \sigma_{z}^{(i)})$$

If a flip occurs the control atom is not mapped back to $|0\rangle_c$

Entanglement is not reversed and whole system evolves according to

$$\partial_t \varrho = \gamma \left(c_i \varrho c_i^{\dagger} - \frac{1}{2} \{ c_i^{\dagger} c_i, \varrho \} \right) + \mathcal{O}(\theta^3)$$

- Each spin flip moves excitation to adjacent plaquette. For $\theta = \pi$ move takes place with unity probability, i.e. fastest cooling
- Picture: Numerical simulation with 32 particles

19/21

Fermi-Hubbard Model in 2D [Wei10; Wei+11]

What now about the Hubbard model? Well...

$$\begin{split} H &= -t \sum_{i,j,\sigma} \left(\sigma_{i,j,\sigma}^{x} \sigma_{i+1,j,\sigma}^{x} + \sigma_{i,j,\sigma}^{y} \sigma_{i+1,j,\sigma}^{y} \right) \sigma_{i',j',\sigma}^{z} + t \sum_{i,j,\sigma} \left(\sigma_{2i,j,\sigma}^{x} \sigma_{2i,j+1,\sigma}^{x} + \sigma_{2i,j,\sigma}^{y} \right) \\ &+ t \sum_{i,j,\sigma} \left(\sigma_{2i+1,j,\sigma}^{x} \sigma_{2i+1,j+1,\sigma}^{x} + \sigma_{2i+1,j,\sigma}^{y} \sigma_{2i+1,j+1,\sigma}^{y} \right) (-1)^{j+1} \sigma_{2i'+1,j',\sigma}^{x} \sigma_{2i'+1,j'}^{y} \\ &+ V \sum_{i,j,\sigma} \sigma_{2i,2j,\sigma}^{z} \sigma_{2i+1,2j+1,\sigma}^{z} \sigma_{2i',2j',\sigma}^{x} \sigma_{2i'+1,2j',\sigma}^{x} \sigma_{2i'+1,2j'+1,\sigma}^{x} \\ &+ V \sum_{i,j,\sigma} \sigma_{2i+1,2j+1,\sigma}^{z} \sigma_{2i,2j+2,\sigma}^{z} \sigma_{2i',2j'+1,\sigma}^{z} \sigma_{2i'+1,2j'+1,\sigma}^{z} \sigma_{2i'+1,2j'+1,\sigma}^{z} \sigma_{2i'+1,2j'+1,\sigma}^{z} \\ &+ V \sum_{i,j,\sigma} \sigma_{2i+1,2j,\sigma}^{z} \sigma_{2i+2,2j+1,\sigma}^{z} \sigma_{2i'+1,2j',\sigma}^{y} \sigma_{2i'+2,2j',\sigma}^{y} \sigma_{2i'+1,2j'+1,\sigma}^{y} \sigma_{2i'+2,2j'+1,\sigma}^{y} \\ &+ V \sum_{i,j,\sigma} \sigma_{2i+1,2j+2,\sigma}^{z} \sigma_{2i+2,2j+1,\sigma}^{z} \sigma_{2i'+1,2j'+1,\sigma}^{y} \sigma_{2i'+2,2j'+1,\sigma}^{y} \sigma_{2i'+2,2j'+2,\sigma}^{y} \sigma_{2i'+2,2j'+1,\sigma}^{y} \sigma_{2i'+2,2j'+1,\sigma}^{y} \sigma_{2i'+2,2j'+1,\sigma}^{y} \sigma_{2i'+2,2j'+2,\sigma}^{y} \sigma$$

H. Weimer et al. Quantum Information Processing 10, 6 (2011), pp. 885-906

Fermi-Hubbard Model in 2D [Wei10; Wei+11]

What now about the Hubbard model? Well...

$$\begin{split} H &= -t \sum_{i,j,\sigma} \left(\sigma_{i,j,\sigma}^{x} \sigma_{i+1,j,\sigma}^{x} + \sigma_{i,j,\sigma}^{y} \sigma_{i+1,j,\sigma}^{y} \right) \sigma_{i',j',\sigma}^{z} + t \sum_{i,j,\sigma} \left(\sigma_{2i,j,\sigma}^{x} \sigma_{2i,j+1,\sigma}^{x} + \sigma_{2i,j,\sigma}^{y} \right) \\ &+ t \sum_{i,j,\sigma} \left(\sigma_{2i+1,j,\sigma}^{x} \sigma_{2i+1,j+1,\sigma}^{x} + \sigma_{2i+1,j,\sigma}^{y} \sigma_{2i+1,j+1,\sigma}^{y} \right) (-1)^{j+1} \sigma_{2i'+1,j',\sigma}^{x} \sigma_{2i'+1,j'}^{y} \\ &+ V \sum_{i,j,\sigma} \sigma_{2i,2j,\sigma}^{z} \sigma_{2i+1,2j+1,\sigma}^{z} \sigma_{2i',2j',\sigma}^{x} \sigma_{2i'+1,2j',\sigma}^{x} \sigma_{2i'+1,2j',\sigma}^{x} \sigma_{2i'+1,2j'+1,\sigma}^{z} \\ &+ V \sum_{i,j,\sigma} \sigma_{2i+1,2j+1,\sigma}^{z} \sigma_{2i,2j+2,\sigma}^{z} \sigma_{2i',2j'+1,\sigma}^{x} \sigma_{2i'+1,2j'+1,\sigma}^{x} \sigma_{2i'+1,2j'+1,\sigma}^{x} \sigma_{2i'+1,2j'+1,\sigma}^{y} \sigma_{2i'+2,2j',\sigma}^{z} \sigma_{2i'+1,2j+1,\sigma}^{z} \sigma_{2i+2,2j+1,\sigma}^{z} \sigma_{2i'+1,2j',\sigma}^{y} \sigma_{2i'+2,2j',\sigma}^{y} \sigma_{2i'+1,2j'+1,\sigma}^{y} \sigma_{2i'+2,2j'+1,\sigma}^{y} \sigma_{2i'+2,2$$

H. Weimer et al. Quantum Information Processing 10, 6 (2011), pp. 885-906

■ 20/21

Summary

What You Should Remember

Summary

What You Should Remember

- Simulating quantum mechanics on a computer is exponentially hard
- Many-body gates can be used to simulate many-body interactions
- Rydberg atoms are very suitable, because the interactions are long range and allow for single-site addressability
- Dissipative preparation of ground states
- Implementation of complex spin systems
- Toric code can be set up such that it is self correcting

Acknowledgement

Przemyslaw Bienias

ITP1 — |

Marcel Klett

Holger Cartarius

Harald Kübler

References & Further Reading

- [Bar+11] J. T. Barreiro et al. Nature 470, 7335 (2011), pp. 486-491.
- [BP06] H. P. Breuer and F. Petruccione. The theory of open quantum systems. 1st ed. Oxford University Press, 2006.
- [Fey82] R. P. Feynman. Int. J. Theo. Phys. 21, 6/7 (1982), pp. 467–488.
- [Gaë+09] A. Gaëtan et al. Nature Physics 5, 2 (2009), pp. 115-118.
- [Llo96] S. Lloyd. Science 273 (1996), pp. 1073–1078.
- [Mül+09] M. Müller et al. Phys. Rev. Lett. 102, 17 (2009), p. 170502.
- [Sei14] U. Seifert. "Quantenmechanik 2". Lecture. 2014.
- [Urb+09] E. Urban et al. *Nature Physics* 5, 2 (2009), pp. 110–114.
- [Wei+10] H. Weimer et al. Nature Physics 6, 5 (2010), pp. 382–388.
- [Wei+11] H. Weimer et al. Quantum Information Processing 10, 6 (2011), pp. 885–906.
- [Wei10] H. Weimer. "Quantum many-body physics with strongly interacting Rydberg atoms". PhD thesis. 2010.

Important, Experiments

Appendix

Time Scales

Appendix: Time Scales of the Gate [Mül+09]

Numbers for ⁸⁷Rb for a gate fidelity of 99 %:

$$\begin{split} \tau^{(c)}_{|r\rangle} &= 66\, \mbox{\mu s} & \Omega_p &= 2\pi \times 70 \, \mbox{MHz} \\ T &= 0.44 \, \mbox{\mu s} & V_{ce} &= 10 \Omega_c^2 / \Delta \approx 56.3 \, \mbox{GHz} \\ \Delta &= 2\pi \times 1.2 \, \mbox{GHz} & \Omega_c &= 6 \Omega_p \approx 2.6 \, \mbox{GHz} \end{split}$$

I

Appendix: Decay of a Two-Level System [BP06; Sei14]

Reminder: Lindblad Master Equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\varrho = -\frac{\mathrm{i}}{\hbar}[\mathcal{H},\varrho] + \sum_{i=1}^{N^2-1} \gamma_i \left(c_i \varrho c_i^{\dagger} - \frac{1}{2} \{c_i^{\dagger} c_i, \varrho\}\right)$$

Two-Level System

$$\mathcal{H} = \frac{\hbar\omega_0}{2}\sigma_z$$

$$c_1 = \sigma_+, \quad \gamma_1 = \gamma_+$$

$$c_2 = \sigma_-, \quad \gamma_2 = \gamma_- \qquad \sigma_+ = |e\rangle\langle g| = \sigma_x + i\sigma_y$$

$$c_3 = \sigma_z, \quad \gamma_3 = \gamma_z \qquad \sigma_- = |g\rangle\langle e| = \sigma_x - i\sigma_y$$

Ш

Appendix: Decay of a Two-Level System [BP06; Sei14]

Master Equation

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t}\varrho &= -\frac{\mathrm{i}\omega_0}{2}(\sigma_z\varrho - \varrho\sigma_z) + \gamma_+ \left(\sigma_+\varrho\sigma_- - \frac{1}{2}\sigma_-\sigma_+\varrho - \frac{1}{2}\varrho\sigma_-\sigma_+\right) \\ &+ \gamma_- \left(\sigma_-\varrho\sigma_+ - \frac{1}{2}\sigma_+\sigma_-\varrho - \frac{1}{2}\varrho\sigma_+\sigma_-\right) \\ &+ \gamma_z \left(\sigma_z\varrho\sigma_z - \frac{1}{2}\sigma_z\sigma_z\varrho - \frac{1}{2}\varrho\sigma_z\sigma_z\right) \quad (*) \end{split}$$

Time evolution of matrix elements

$$\langle e|(*)|e\rangle : \qquad \frac{\mathrm{d}}{\mathrm{d}t}\varrho_{ee} = \gamma_{+}\varrho_{gg} - \gamma_{-}\varrho_{ee}$$
$$\langle g|(*)|g\rangle : \qquad \frac{\mathrm{d}}{\mathrm{d}t}\varrho_{gg} = -\gamma_{+}\varrho_{gg} + \gamma_{-}\varrho_{ee}$$

Appendix

Lindblad Master Equation

111

Appendix: Decay of a Two-Level System [BP06; Sei14]

Solution of the differential equations

Calculating the coherences $\langle e|(*)|g\rangle$ and $\langle g|(*)|e\rangle$ allows to derive the principle of detailed balance.