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Universal Quantum Simulation Motivation

Strongly Correlated Electronic Systems

Hubbard Model

The Hamiltonian in second quantization reads

H = −t
∑

〈i,j〉,σ
c†i,σcj,σ + U

∑

i

ni,↑ni,↓

i j

Problems in condensed matter physics

High-Tc superconductors, Magnets, etc.

Not analytically solvable

Numerically impossible for many particles

Problem

Exponential growth of the Hilbert space with the
particle number.
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Universal Quantum Simulation Definition by Feynman and Lloyd

Feynman’s Answer [Fey82; Llo96]

Current state of the art: 40 particles, 240 variables

300 particles one would require 2300 variables, which
is the number of particles in the universe.

Simulating Physics with Computers

“Let the computer itself be built of quantum mechanical
elements which obey quantum mechanical laws.”

Further elaborated by Lloyd: A Universal Quantum Simulator could simulate
the dynamics of other systems with short-range interactions.

exp

(
i

~
Ht
)
≈ exp

(
i

~
H1t

)
exp

(
i

~
H2t

)
· · · exp

(
i

~
Hnt

)

Digital Quantum Simulator: A Universal Quantum Simulator which
advances in discrete time steps.
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Rydberg Quantum Simulation Why Rydberg Atoms?

Rydberg Gates Revisited [Urb+09]

Large dipole moment gives rise to strong Rydberg-Rydberg interaction

The van der Waals coefficient of the repulsion scales like

C6 ∼ n11

One atom can be excited
into a Rydberg state, but a
second one in the vicinity
cannot

The Ryd-Ryd interaction
shifts the Rydberg level of
the second atom out of
resonance

|0〉

|1〉

|r〉
Control Target
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Rydberg Quantum Simulation Why Rydberg Atoms?

Rydberg Gates [Wei10; Mül+09]

Common setup: Atoms trapped in deep optical lattice

Rydberg atoms possess long-range interactions

Allows for large spacing and gives rise to better single-site addressability

Mesoscopic Gate

Coupling to many atoms in the vicinity allows to change the state of N atoms

CNOT→ CNOTN

Control
qubit Ensemble

qubits

Rydberg
interaction

|0〉|1〉 |A〉|B〉
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Rydberg Quantum Simulation Mesoscopic CNOT Gate

Principles of the CNOT Gate

The CNOT gate flips the target qubit depending on the state of the control
qubit

CNOT Mapping Rule

Let |α, β〉 be a product of control and target qubit, where α ∈ {0, 1} denotes the
control and β ∈ {A,B} the target qubit

CNOT |0, A〉 = |0, A〉
CNOT |1, A〉 = |1, B〉

|0, A〉 → |0, A〉 , |1, A〉 → |1, B〉
|0, B〉 → |0, B〉 , |1, B〉 → |1, A〉
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Rydberg Quantum Simulation Mesoscopic CNOT Gate

Mesoscopic Rydberg Gate Based on EIT [Mül+09; Wei10]

To implement a mesoscopic CNOT gate we need to find a way to flip N
qubits at once. Suppose |AN 〉 =

∏
i |A〉i

|0, AN 〉 → |0, AN 〉 , |1, AN 〉 → |1, BN 〉
|0, BN 〉 → |0, BN 〉 , |1, BN 〉 → |1, AN 〉

Independent of the actual number and position of the particles

Properly pulsed laser light drives required transitions

CNOT Gate Operator

The gate operation is unitary, so it can
be easily reversed

U = |0〉〈0|c ⊗ 11 + |1〉〈1|c ⊗
N∏

i=1

σ(i)
x

Rydberg interaction|0〉|1〉

|A〉|B〉

Control qubit

Ensemble qubit
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Rydberg Quantum Simulation Mesoscopic CNOT Gate

Mesoscopic Rydberg Gate Based on EIT [Mül+09; Wei10]

Control Atom in |0〉:

CNOT |0, AN 〉 = |0, AN 〉

EIT condition fulfilled (target
is transparent for Ωp)
Raman transfer is blocked

Control Atom in |1〉:

CNOT |1, AN 〉 = |1, BN 〉

EIT condition violated
(Rydberg level shifted off
resonance)
Raman transfer is feasible

t

π
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Rydberg Quantum Simulation Mesoscopic CNOT Gate

Mesoscopic Rydberg Gate Based on EIT [Mül+09; Wei10]

Many-Body Gate

We exploited long-range many-body Rydberg-Rydberg interactions to realise a
many-body quantum gate

Many-Body Quantum Simulation

Can we reverse the process and simulate many-body interactions using a
many-body quantum gate?

Rydberg interaction|0〉|1〉

|A〉|B〉

Control qubit

Ensemble qubit ⇐
i j
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Ap =
∏
i

σ
(i)
x

Bs =
∏
j

σ
(j)
z|3〉

Ground State Preparation by Master Equation

Outline

1 Universal Quantum Simulation

2 Rydberg Quantum Simulation

3 Ground State Preparation by Master Equation
Simple Lattice Model
Dissipative State Preparation
Cooling into the Ground State
Rydberg Setup
Implementation of a Single Step
More Interesting Systems



Ground State Preparation by Master Equation Simple Lattice Model

The Toric Code [Wei10; Wei+11]

Spins are located on the edges of a two-dimensional lattice

Two types of four-body interaction

Plaquette terms Ap =
∏
i σ

(i)
x

Star terms Bs =
∏
j σ

(j)
z

Toric Code Hamiltonian

Linear superposition of local interactions

H = −
∑

i

A(i)
p −

∑

j

B(j)
s

Ap =
∏
i

σ
(i)
x

Bs =
∏
j

σ
(j)
z

Global ground state |ψ〉 is eigenstate of both stabilisers

Ap |ψ〉 = |ψ〉 , Bs |ψ〉 = |ψ〉
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Ground State Preparation by Master Equation Simple Lattice Model

Excitations of the Toric Code [Wei10; Wei+11]

Violations of the stabiliser constraints are called excitations

“Magnetic” excitation Ap |m〉 = − |m〉
“Charge” excitation Bs |e〉 = |e〉

a) b) c)
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Ground State Preparation by Master Equation Dissipative State Preparation

Intermezzo: Dissipative State Preparation [BP06; Sei14]

Dissipation is described by a coupling V (t) to a heat bath

Markovian evolution of the system

%(t) = V (t)%(0) = eLt%(0)

with the superoperator L

Lindblad Master Equation

The evolution of the density matrix %(t) is given by a generalised
Liouville-von-Neumann equation

d

dt
% = − i

~
[H, %] +

∑

i

γi

(
ci%c

†
i −

1

2
{c†i ci, %}

)

with jump operators ci and decay rates γi.
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Ground State Preparation by Master Equation Cooling into the Ground State

Dark States [BP06]

Definition: Dark State

Here we define a dark state to be a state for which all coupling to the reservoir
vanishes

ci |D〉 = 0

The dark state is now a stationary state of the system and a trivial solution
to the master equation is

% = |D〉〈D|

d

dt
% = − i

~

(
H |D〉〈D| − |D〉〈D|H

)

+
∑

i

γi

[
ci |D〉〈D| c†i −

1

2

(
c†i ci |D〉〈D|+ |D〉〈D| c†i ci

)]

Contrive a jump operator with the properties

The dark state is the ground state
The system cools itself into the ground state
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Ground State Preparation by Master Equation Cooling into the Ground State

State Preparation of the Toric Code [Wei10; Wei+11]

Review: Toric Code Hamiltonian

H = −
∑

i

A(i)
p −

∑

j

B(j)
s

Jump operator for the magnetic
excitations

cp =
1

2
σ(i)
z (1−Ap)

The ground state is a dark state, i.e.

cp |ψ〉 = 0

The jump operator cools any density
matrix into the unique ground state
by

diffusion of excitations
annihilation of identical
excitations

a)

b)

c)
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Ground State Preparation by Master Equation Rydberg Setup

The Toric Code with Rydberg Atoms [Wei10; Wei+11]

Rydberg atoms in a large-spacing optical
lattice

Control atoms placed in the middle of
plaquettes

Recent developments:

Rydberg blockade between two atoms
Group of M. Saffman: E. Urban et al.

Nature Physics 5, 2 (2009), pp. 110–114

Selective excitation based on the
Rydberg Blockade
Group of P. Grangier: A. Gaëtan et al.

Nature Physics 5, 2 (2009), pp. 115–118

|0〉 |1〉

|r〉

Ωr

|A〉 |B〉

|P 〉
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|R〉

Ωp Ωp

Ωc
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Ground State Preparation by Master Equation Rydberg Setup

Quantum Simulation with Ultra Cold Ions [Bar+11]

Quantum simulation with five trapped ions

J. T. Barreiro et al. Nature 470, 7335 (2011), pp. 486–491

Minimal instance of Toric Code stabiliser

Implements dissipative dynamics through optical pumping

Proof of concept, the experiment is not scalable

For efficient quantum simulation we need n ∼ 100 ions
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Ground State Preparation by Master Equation Implementation of a Single Step

Single Time Step [Wei10; Wei+11; Wei+10]

Because interactions are local we can focus on single
plaquette

H = Ap = σ(1)
x σ(2)

x σ(3)
x σ(4)

x

Gate sequence for the simulation consists of four steps:

G entangles the control and the target atom
e−iφσz is the coherent evolution of the control atom, U(θ) is a
controlled spin flip on one ensemble atom
G−1 reverses the entanglement of control and target atom
Optical pumping of the control atom back to |0〉c introduces dissipation

|0〉c |0〉c

e−iφAp

cp

=

|0〉c |0〉coptical

pumping

G

e−iφσz

U(θ)
G−1
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Ground State Preparation by Master Equation Implementation of a Single Step

Single Time Step [Wei10; Wei+11; Wei+10]

G is a three step process

Uc = exp(−iπσy/4) is the standard π/2 qubit rotation.
Ug maps the eigenstate of the ensemble atoms onto the control atom

Ug = |0〉〈0|c ⊗ 11 + |1〉〈1|c ⊗
N∏

i=1

σ(i)
x

U−1c = exp(iπσy/4) reverses the rotation

|0〉c |1〉c

G =

|0〉c |1〉c

|λ,−〉 |λ,−〉 |λ,−〉 |λ,−〉

Uc

|0〉c + |1〉c

Ug

|0〉c − |1〉c
U−1
c
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Ground State Preparation by Master Equation Implementation of a Single Step

Single Time Step [Wei10; Wei+11; Wei+10]

|0〉c |0〉c

e−iφAp

cp

=

|0〉c |0〉coptical

pumping

G

e−iφσz

U(θ)
G−1

G maps the internal state
of the ensemble atoms on
the control atom

G |0〉c ⊗ |λ,+〉 → |0〉c ⊗ |λ,+〉
G |0〉c ⊗ |λ,−〉 → |1〉c ⊗ |λ,−〉
|λ,±〉 is eigenstate of the

interaction Ap =
∏
i σ

(i)
x

with eigenvalue ±1

Phase rotation on the control atom and
applying G−1 is equivalent to the
many-body interaction Ap

exp(−iφAp) = G−1 exp(−iφσ(c)
z )G

Controlled spin flip onto one of the
ensemble atoms

Ui(θ) = |0〉〈0|c ⊗ 11 + |1〉〈1|c ⊗ exp(iθσ(i)
z )

Leaves |λ,+〉 invariant
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Ground State Preparation by Master Equation Implementation of a Single Step

Cooling to the Ground State [Wei10; Wei+11; Wei+10]

Controlled spin flip onto one of the ensemble atoms

Ui(θ) = |0〉〈0|c ⊗ 11 + |1〉〈1|c ⊗ exp(iθσ(i)
z )

If a flip occurs the control atom is not mapped back to |0〉c
Entanglement is not reversed and whole system evolves according to

∂t% = γ

(
ci%c

†
i −

1

2
{c†i ci, %}

)
+O(θ3)

Each spin flip moves excitation to
adjacent plaquette. For θ = π
move takes place with unity
probability, i.e. fastest cooling

Picture: Numerical simulation with
32 particles

E
[E

0
]

θ = π/4
θ = π/2
θ = π

t[τ ]
0 10 20 30 40

−32

−28

−24

−20

−16

↪→ [Wei+11]
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Ground State Preparation by Master Equation More Interesting Systems

Fermi-Hubbard Model in 2D [Wei10; Wei+11]

What now about the Hubbard model? Well. . .

H =− t
∑

i,j,σ

(
σxi,j,σσ

x
i+1,j,σ + σyi,j,σσ

y
i+1,j,σ

)
σzi′,j′,σ + t

∑

i,j,σ

(
σx2i,j,σσ

x
2i,j+1,σ + σy2i,j,σσ

y
2i,j+1,σ

)
(−1)j+1σy2i′,j′,σσ

x
2i′,j′+1,σ

+ t
∑

i,j,σ

(
σx2i+1,j,σσ

x
2i+1,j+1,σ + σy2i+1,j,σσ

y
2i+1,j+1,σ

)
(−1)j+1σx2i′+1,j′,σσ

y
2i′+1,j′+1,σ +

U

4

∑

i,j

(1− σzi,j,↑)(1− σzi,j,↓)

+ V
∑

i,j,σ

σz2i,2j,σσ
z
2i+1,2j+1,σσ

x
2i′,2j′,σσ

x
2i′+1,2j′,σσ

x
2i′+1,2j′,σσ

x
2i′+1,2j′+1,σ

+ V
∑

i,j,σ

σz2i+1,2j+1,σσ
z
2i,2j+2,σσ

x
2i′,2j′+1,σσ

x
2i′+1,2j′+1,σσ

x
2i′,2j′+2,σσ

x
2i′+1,2j′+2,σ

+ V
∑

i,j,σ

σz2i+1,2j,σσ
z
2i+2,2j+1,σσ

y
2i′+1,2j′,σσ

y
2i′+2,2j′,σσ
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Ground State Preparation by Master Equation More Interesting Systems

Fermi-Hubbard Model in 2D [Wei10; Wei+11]

What now about the Hubbard model? Well. . .
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Summary What You Should Remember

What You Should Remember

Simulating quantum mechanics on a computer is exponentially hard

Many-body gates can be used to simulate many-body interactions

Rydberg atoms are very suitable, because the interactions are long range
and allow for single-site addressability

Dissipative preparation of ground states

Implementation of complex spin systems

Toric code can be set up such that it is self correcting
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PI5



References & Further Reading

[Bar+11] J. T. Barreiro et al. Nature 470, 7335 (2011), pp. 486–491.

[BP06] H. P. Breuer and F. Petruccione. The theory of open quantum systems. 1st ed.
Oxford University Press, 2006.

[Fey82] R. P. Feynman. Int. J. Theo. Phys. 21, 6/7 (1982), pp. 467–488.
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Appendix Time Scales

Appendix: Time Scales of the Gate [Mül+09]

γ
(c)
|r〉 =

1

τ
(c)
|r〉
�

radiative decay of |r〉

1

T
∼

duration of Raman pulse

Ω2
p

∆
�

EIT condition

Ω2
c

∆
�

Ryd-Ryd interaction

Vce

|0〉 |1〉

|r〉

Ωr

|A〉 |B〉

|P 〉
∆

|R〉

Ωp Ωp

Ωc

Numbers for 87Rb for a gate fidelity of 99 %:

τ
(c)
|r〉 = 66 µs Ωp = 2π × 70 MHz

T = 0.44 µs Vce = 10Ω2
c/∆ ≈ 56.3 GHz

∆ = 2π × 1.2 GHz Ωc = 6Ωp ≈ 2.6 GHz



Appendix Lindblad Master Equation

Appendix: Decay of a Two-Level System [BP06; Sei14] I

Reminder: Lindblad Master Equation

d

dt
% = − i

~
[H, %] +

N2−1∑

i=1

γi

(
ci%c

†
i −

1

2
{c†i ci, %}

)

Two-Level System

H =
~ω0

2
σz

c1 = σ+, γ1 = γ+

c2 = σ−, γ2 = γ−
c3 = σz, γ3 = γz

σ+ = |e〉〈g| = σx + iσy

σ− = |g〉〈e| = σx − iσy



Appendix Lindblad Master Equation

Appendix: Decay of a Two-Level System [BP06; Sei14] II

Master Equation

d

dt
% = − iω0

2
(σz%− %σz) + γ+

(
σ+%σ− −

1

2
σ−σ+%−

1

2
%σ−σ+

)

+ γ−

(
σ−%σ+ −

1

2
σ+σ−%−

1

2
%σ+σ−

)

+ γz

(
σz%σz −

1

2
σzσz%−

1

2
%σzσz

)
(∗)

Time evolution of matrix elements

〈e|(∗)|e〉 :
d

dt
%ee = γ+%gg − γ−%ee

〈g|(∗)|g〉 :
d

dt
%gg = −γ+%gg + γ−%ee



Appendix Lindblad Master Equation

Appendix: Decay of a Two-Level System [BP06; Sei14] III

Solution of the differential equations

0

1

1/γ

γ−/γ

γ+/γ

time t

p
ro
b
a
b
il
it
y
d
en
si
ty
%

%ee(t)

%gg(t)

Calculating the coherences 〈e|(∗)|g〉 and 〈g|(∗)|e〉 allows to derive the
principle of detailed balance.
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