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The Rouse and the Zimm regime are two different scaling regimes in polymer
dynamics. While the Rouse regime neglects hydrodynamic interactions the
Zimm regime takes these into account. Before we can dive into the details of the
differences we need to work through some more fundamental stuff. Starting off
with the fundamental equation of hydrodynamics we move on to hydrodynamic
interactions. Then some basics of polymer physics are discussed such that we
can understand the scalings in the two regimes.

I. HYDRODYNAMIC INTERACTIONS

There are several approaches for the description of fluids in physics. The Navier-
Stokes equation is a continuum approach to describe fluid dynamics. The Navier-Stokes
equation can either be derived from the Boltzmann transport equation or motivated
from the conservation of mass and momentum in 3D. We will approach the latter. The
nonlinearity makes it hard to solve and the proof of existance of a strong solution
to the Navier-Stokes equation is a Millenium Problem in mathematics. The fluid is
characterised by its flow field u(r, t). One can plug in an arbitrary r and t to obtain
the velocity of the volume element at those values1.

The continuity equation is the mathematical form of mass conservation. The change
of the density is proportional to the change of the flux (momentum density), e.g. if a
certain amount of fluid is removed from the considered volume via a pipe, then the
decrease of the fluid mass is proportional to the flux through that pipe. The continuity
equation is just the differential formulation of that example. The standard continuity
equation reads

∂t%+∇ · u = 0. (1)

Because liquids are in general incompressible we assume a constant density %(r, t) = %.
Thus all derivatives of the density vanish and the continuity equation changes to

∇ · u = 0. (2)

Newton’s second law states that if a force is excerted onto an object its momentum
changes, i.e. F = ṗ. The momentum p is equal to mu. We divide Newton’s second
law by the volume to obtain all quantities as densities. The force acting on a bulk of
fluid can be split into interal forces and external forces1. The internal forces are given
by the divergence of the stress tensor, cf. figure 1.

d

dt
(%u) = fint + fext = ∇ · σ̂ + fext (3)
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FIG. 1. For the derivation of Navier-Stokes we consider an infinitesimal volume element dV .

Now we carry out the derivative on the left hand side. Because it is a total derivative
we need to take care of the arguments of u(r, t) as well.

%
d

dt
u(r, t) = %

(
∂u

∂t
+
∂u

∂r

∂r

∂t

)
= %

(
∂u

∂t
+ (u · ∇)u

)
. (4)

Plugging this into Newton’s second law leaves us with a preliminary form of the
Navier-Stokes equation.

%

(
∂

∂t
+ u · ∇

)
u = ∇ · σ̂ + fext. (5)

From continuum mechanics one can derive the linear stress constitutive equation

σ̂ = −p11 + η [∇u+ (∇u)ᵀ] . (6)

The stress inside dV always incorporates the pressure. For fluids an additional term is
present, the Jacobian of the flow field with the scale factor η which is called viscosity.
The Jacobian transports the momentum along the shear direction1. The transposed
Jacobian is needed to ensure the symmetry of σ̂. Plugging this in, we find the Navier-
Stokes equation for an incompressible and isotropic Newtonian fluid

%

(
∂

∂t
+ u · ∇

)
u = −∇p+ η∇2u+ fext (7)

The units of the Navier-Stokes equation can be rescaled such that all constants are
unified in one, the so called Reynolds number. The Reynolds number is the quotient of
intertial forces LU and viscous forces ν.

ν =
η

%
, u′ =

u

U
, p′ =

p

%U
, f ′ext =

fextL

U
,

∂

∂t′
=
L

U

∂

∂t
, ∇′ = L∇(

∂

∂t′
+ u′ · ∇′

)
u′ = −∇′p′ + ν

LU︸︷︷︸
1/Re

∇′2u′ + f ′ext (8)

The two quantities L and U are called characteristic length and speed. One can estimate
the Reynolds numbers by plugging in characteristic length and speed. For a human

2



THEORY OF POLYMER DYNAMICS

swimming in water one chooses for example L = 1 m, because the height of a human is
measured in metres and U = 1 m s−1, because that is about the speed at that a human
moves in water.

For water (% = 103 kg m−3 and η = 10−3 N s m−2) the typical regime of Reynolds
numbers in everyday life (L = 1 m and U = 1 m s−1) is of the order of Re ≈ 106. This
does not hold for polymers, because their spacial extent is only of the order of a few
nano- to micrometres. Assuming L = 10−6 m and U = 10−6 m s−1 we eventually find
Re ≈ 10−6.

With such a low Reynolds number the left hand side of the Navier-Stokes equation (7)
can be neglected and we are left with

η∇2u−∇p+ fext = 0 (9)

which is called the Stokes equation or creeping flow equation1. Because this equation
does no longer ensure continuity we need to extend it to a set of two equations, where
the second one is the continuity equation for constant density

∇ · u = 0. (10)

The pressure of the fluid can be calculated in a self consistent way and does not depend
on the flow field anymore. Therefore take the divergence of the Stokes equation to
obtain

∇2p = ∇ · fext. (11)

The voriticy is defined as Ω = ∇×u and propagates the hydrodynamic interactions2.
Taking the curl of the Navier-Stokes equation and plugging in the vorticity one obtains
a differential equation for the vorticity which is of diffusion type.

∂

∂t
Ω = ν∇2Ω. (12)

The relaxation time of this diffusion is τ = L2/ν. For short length scales as for micro
organisms L ≈ 10−6 m this relaxation is of the order of τ ≈ 10−6 s and is therefore
assumed to be instantaneous, i.e. no delay effects are taken into account.

If particles are dissolved in the fluid they interact via their respective flow field. One
can think of these interactions as particles pushing and pulling each others with their
stern and bow waves (unless that on tiny length scales there is no such thing as waves).
Through the flow field a particle induces forces and torques which are excerted on other
particles. This coupling is scaled by the elements of the mobility tensor µ̂

vi =
∑
j

(µ̂tt
ijFj + µ̂tr

ijMj) (13)

ωi =
∑
j

(µ̂rt
ijFj + µ̂rr

ijMj) (14)

where

µ̂ =

[
µ̂tt µ̂tr

µ̂rt µ̂rr

]
(15)

which is positive definite and symmetric2. The indices “tt” and “rr” denote the
translational and rotational modes, respectively and “tr” and “rt” their coupling. For
the further discussion only the translational component is relevant.
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FIG. 2. Two particles excerting a force on the fluid indicated by the arrows. The complete

flow field is a superposition of the two single particle fields2.

In the Stokes equation one has the Laplacian of the flow field. For this type of
differential equation one can determine Green’s function. The fluid flow and the pressure
are proportional to the external force. Transforming the Stokes equation to Fourier
space yields3

u(k) = T̂(k) · fext. (16)

The tensor T̂(k) is called Oseen matrix and reads

T̂(k) =
1

ηk2

[
11 +

kk

k2

]
(17)

or in real space

T̂(r) =
1

8πη

1

r

[
11 +

rr

r2

]
. (18)

The linearity of Stokes equation allows for the superposition of the flow fields, i.e.

u(r) =
∑
i

∫
driT̂(r − ri) · f (i)

ext. (19)

As an example one can find in figure 2 the joint flow field of two particles which excert
forces onto the fluid.

Up to now the description of hydrodynamic interactions was confined to the action
of one particle onto another. But if particle one influences the position of particle
two the distancement of particle two will result in a change of its flow field and thus
induces a backaction on particle one. This ping-pong game of interactions continues in
principle forever, though the interaction decays faster for higher orders. To account
for the backaction the distance between the particles one and two is expanded into
powers and after three iterations (i.e. action and backaction onto oneself) one has the
interaction matrix

M̂(r) =
3

4

a

r

[
11 +

rr

r2

]
+

1

2

a3

r3

[
11− 3

rr

r2

]
. (20)

With this the mobility tensor can be constructed akin to the Oseen matrix, which is
now called the Rotne-Prager approximation4

µ̂tt
ii =

1

6πηa
11,

µ̂tt
ij =

(
1 +

1

6
a2∇j

)
M̂(ri − rj) , i 6= j.

(21)
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FIG. 3. As in figure 2 two particles excert a force on the fluid indicated by the arrows. This

time the Rotne-Prager approximation has been calculated. One can see that in the near field

(between the particles) the flow field has a considerably different shape than for the Oseen

matrix calcuation, whereas the far field stays nearly invariant2.
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FIG. 4. A polymer is coarse-grained by neglecting irrelevant microscopic properties. Here the

monomers are replaced by beads and the bonds connecting the monomers by springs.

In addition to the r−3 term, which scales like the Oseen matrix, one now also has the
r−5 term. It is obvious that this term will become large for small distances, i.e. the
near field will substantially differ in comparison to the flow field as calculated with the
Oseen matrix, cf. figure 3.

II. ROUSE REGIME

Before we can start discussing the details of the Rouse regime we need to familiarise
with a couple of terms in polymer physics.

Polymers are built by monomers connected with bonds. For simplicity these
monomers can be replaced by “beads”. Since we are not interested in the quan-
tum mechanics of the bond we can model it as a spring, cf. figure 4. Significant
observables of a polymer are the centre of mass

R =
1

N

N∑
i=1

Ri, (22)

the radius of gyration (a measure for the spacial extent of a polymer)

R2
g =

1

2N2

N∑
i=1

〈
(Ri −R)2

〉
, (23)
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and the end to end distance (a measure for the length of a polymer)

R2
e = (RN −R1)

2. (24)

For the radius of gyration and the end to end distance one finds the scaling behaviour
〈R2

e〉 ∝ 〈R2
g〉 ∝ N2ν with the Flory exponent ν5.

The dynamics of a polymer at zero temperature would be quite boring as nothing
moves. For finite temperature we have to take into account thermal fluctuations in the
surroundings regareded to a Brownian motion. For Brownian motion we assume an
equation of motion with a damping term with the friction coefficient ζ and a Gaussian
distributed random force f(t). This leads to the Langevin equation

m
d2x

dt2
= −ζ dx

dt
+ F (x, t) + f(t). (25)

The transition to Brownian dynamics follows if we let m→ 0 and assume a conservative
force which can thus be written as the gradient of a potential5.

−ζ dx

dt
−∇U + f(t) = 0. (26)

It is important that 〈fα(t)〉 = 0 and 〈fα(t)fβ(t′)〉 = 2ζkBTδ(t − t′)δαβ for Brownian
motion to take place. The generalised Langevin equation can be derived from the
Focker-Planck equation (Focker-Planck describes the time evolution of the probability
density for stochastic variabels)5. Instead of the friction on the left hand side we now
have coupling matrices. The generalised Langevin equation reads

d

dt
xn =

∑
m

L̂nm

(
− ∂U

∂xm
+ fm(t)

)
+
kBT

2

∑
m

∂

∂xm
L̂nm (27)

with the coupling matrices L̂nm.
For the Rouse regime we assume a polymer with N beads, where each bead has the

same friction ζ with the surroundings. In contrast to the Zimm regime, which will be
discussed later, we neglect for now any hydrodynamic interactions between the beads5.
The equation of motion as in (26) now reads

ζ
dRn

dt
= −k(2Rn −Rn+1 −Rn−1) + fn (28)

with the discretised derivative of the spring potential. This equation has the form of N
coupled oscillators. To decouple these equations we introduce the normal coordinates5

Xp =
1

N

N∑
n=1

Rn(t) cos
(pπn
N

)
, p = 0, 1, 2, . . . . (29)

Plugging these into the equation of motion one has

ζp
∂

∂t
Xp = −kpXp + fp (30)

with rescaled frictions, couplings, and forces. The motion of the polymer has been
decomposed into independent modes, the Rouse modes, each of which is capable of
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FIG. 5. Numerical simulation of a polymer with N = 10 to 100 beads in Langevin dynamics.

The fitted slope scales with 1/N and coincides with the data quite well.

independent motion6. The correlation function of the normal coordinates can be
calculated and shows an exponential decay with the relaxation time τp of the Rouse
modes.

〈Xpα(t)Xqβ(0)〉 = δpqδαβ
kBT

kp
e−t/τp , τp =

ζN2b2

3π2p2kBT
(31)

The relaxation time τp is proportional to the Rouse time τ = p2τp which is independent
of the mode p. One can express the original coordinates in terms of the normal
coordinates

Rn = X0 + 2
∞∑
p=1

Xp cos
(pπn
N

)
. (32)

It is obvious that the zeroth mode X0 corresponds to motion of the centre of mass
coordinate.

R =
1

N

N∑
i=1

Rn = X0 (33)

Because we know the correlation of the normal coordinates we can derive an expression
for the mean square displacement of the centre of mass of the polymer.

〈(R(t)−R(0))2〉 =
∑

α=x,y,z

〈(X0α(t)−X0α(0))2〉 = 6
kBT

Nζ
t. (34)

From the mean square displacement we can compute the diffusion coefficient via the
Einstein relation.

D = lim
t→∞

1

6t
〈(R(t)−R(0))2〉 =

kBT

Nζ
(35)

A numerical simulation verifies this result, cf. figure 5.

III. ZIMM REGIME

The Zimm regime is an extension to the Rouse regime. We consider the same setup
as for the Rouse regime above, i.e. a coarse-grained polymer with N beads, but this
time we take into account hydrodynamic interactions. The hydrodynamic coupling
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between the beads is now described by coupling matrices. We choose the Oseen matrix
for interactions between different beads and the unity matrix for the interaction of a
bead with itself5.

Ĥnn =
1

ζ
11 (36)

Ĥnm = T̂(rnm) , n 6= m

=
1

8πη

1

rnm

[
11 +

rnmrnm
r2

]
(37)

with rnm = Rn −Rm. Because the coupling matrices only depend on the distance
and not on the position of the particles the second term in the generalised Langevin
equation (27) drops out and we are left with

dRn

dt
=
∑
m

Ĥnm ·
(
− ∂U

∂Rm

+ fm(t)

)
(38)

Because tensor equations are not easily tractable Zimm introduced a simplification7.
He replaced the Oseen matrix by its equilibrium average. It can be shown that the
result only depends on the “index distance” between the beads.

Ĥnm → 〈Ĥnm〉eq =

∫
d{Rn}Ĥnmfeq({Rn}, t)

=
1

(6π3|n−m|)1/2ηb11

≡ h(n−m)11.

(39)

Therefore the Langevin equation becomes linear again.

∂

∂t
Rn(t) =

∑
m

h(n−m)

(
k
∂2

∂m2
Rm(t) + fm(t)

)
(40)

It is again possible to find normal coordinates but this time the calculation is much
more sophisticated5. In principle the steps are the same as for the Rouse regime. One
finds that the diffusion coefficient is proportional to N−ν .

D =
kBT

ηNνb
∝ 1

N ν
(41)

The exponent ν is called Flory exponent. There are different values for the Flory
exponent. For a polymer without excluded volume effects one finds ν = 1/2. For the
Flory mean field it was found ν = 0.6 and renormalisation group calculations obtained
ν ≈ 0.588. For a polymer with excluded volume in a lattice-Boltzmann fluid, numerical
data is presented in figure 6.

IV. ROUSE VS. ZIMM

In the Rouse regime we studied a coarse-grained polymer under Langevin dynamics,
which does not incorporate hydrodynamic interactions. It was found that the diffusion
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FIG. 6. Numerical simulation of a polymer with N = 10 to 100 beads in a lattice-Boltzmann

fluid with explicit excluded volume interactions. Two functions were fitted, the solid line is

proportional to 1/N0.6, whereas for the dashed line the exponent was also determined by the

fitting routine.
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FIG. 7. Comparison of the different scalings for the Rouse and the Zimm regime. Here it is

obvious to see that they obey different power laws.

coefficient scales with D ∝ 1/N . For the Zimm regime, in contrast, we took into
account hydrodynamic interactions by means of the Oseen matrix. Here the diffusion
coefficient scales with D ∝ 1/Nν , where ν < 1 depends on the boundary conditions.
Figure 7 gives a visual comparison of the two.

Hydrodynamic interactions might be screened by different circumstances. If a
polyelectrolyte (charged polymer) is dissolved in an ionic liquid, a cloud of counter
ions forms around it. When an electric field is applied the polyelectrolyte and the
oppositely charged ions move in rivalling directions which erase each other effectively by
a zero net momentum transfer. This results in a screening of hydrodynamic interactions
between the monomers. The polyelectrolyte behaves like a string of N inert spheres.
The diffusion coefficient is then again given by the Rouse diffusion3.

Polymers may also be immersed in dense polymeric solutions (i.e. a polymer dissolved
mainly in polymers). The polymers in the solvent change the local viscosity of the bare
solvent and lead to a faster exponential decay of the hydrodynamic interactions3. One
can say that the Zimm regime merges into the Rouse regime in absence of hydrodynamic
interactions.

In the previous text it was emphasised that the different regimes exhibit different
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scaling, i.e. we could detect the regimes by their scaling behaviour. To this end we take
into account several correlation functions8,9. The correlation function g1(t) describes
the mean-square displacement of a monomer i (usually the central monomer).

g1(t) = 〈(Ri(t)−Ri(t0))
2〉 ∝ t2/z. (42)

For τb � t � τ , where τb is the time of the ballistic regime and τ is the Rouse
and the Zimm time, respectively, the exponent z scales according to the regime, viz.
z = 2 + 1/ν for Rouse and z = 3 for Zimm. The correlation function g2(t) quantifies
the mean-square displacement of a monomer i from the centre of mass (again, usually
for the central monomer).

g2(t) = 〈[(Ri(t)−R(t))− (Ri(t0)−R(t0))]
2〉 (43)

As above, for τb � t it scales like t0 and one can extract therefore the Rouse and the
Zimm time. For Rouse one has τ ∝ N2 and for Zimm one has τ ∝ N3ν . The correlation
function g3(t) has already been present in the calculation of the diffusion coefficient
but will be repeated for the sake of completeness. It is the mean-square displacement
of the centre of mass.

g3(t) = 〈(R(t)−R(t0))
2〉 = 6Dt (44)

For the diffusion coefficient one finds for τb � t, that D ∝ 1/N for the Rouse regime
and D ∝ 1/Nν for the Zimm regime.

Another measure for the regime is the dynamic structure factor

S(k, t) =
1

N

∑
i,j

〈eik(Ri(t)−Rj(t0))〉 ∝ S(k, 0)f(kzt) (45)

where z is defined as for g1(t).
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