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The Navier-Stokes equation
The Fundamental Equation of Hydrodynamics ™"

m The Navier-Stokes equation is a continuum approach to describe fluid
dynamics

m It combines Newton's second law with conservation of mass
m It is a nonlinear partial differential equation

m The fluid is characterised by its flow field w(r, )
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Motivation of Navier-Stokes "

m Assume the standard continuity f
. ext
equation dV

dro+ V- (ou) =0

E]
m Liquids are in general
incompressible
o(r,t)=o
m Assume Newton's second law m Carrying out the derivative
d N 0 .
a(@u):fintv’o'+fext o %"'uv u:v'o'"'fext
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Hydrodynamic Interactions The Navier-Stokes equation

s [Dho03]

Motivation of Navier-Stoke

m Linear stress constitutive equation
o =—-pl+n[Vu+ (Vu)T]

Here an incompressible and isotropic Newtonian fluid has been assumed.

Navier-Stokes equation

for an incompressible fluid

((‘i T V) = —Vp+ VU + feu
m Rescaling rules
n ;_u fee L 0 Lo ,
= — = — —_ = - - L
v 0 I U ’ p QU fext U ’ 815’ Uat ’ \% \%

0 w 2
(82&’ +u - V’> u'=-V'p+ V/ '+ fls

= 1/Re Reynolds number
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Hydrodynamic Interactions The Navier-Stokes equation

Reynolds number

Reynolds Number
The Reynolds number

T
— (©Sauret

Re ~ 107 Re ~ 10°
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Hydrodynamic Interactions The Navier-Stokes equation

[Dho03]

Creeping Flow

Reminder: Navier-Stokes equation

for an incompressible fluid in rescaled units

Q<%+U'v>u=—vp+nv2u+fext

m For low Reynolds numbers Re < 1 the left hand side term can be neglected
NV2U = Vp+ fox =0
Continuity equation for incompressible fluid

V-u=0

m One has a set of two equations. The first is called creeping flow equation or
Stokes equation

m Take the divergence of the Stokes equation to obtain the pressure

VQPZ V- fext
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Hydrodynamic Interactions Vorticity and Mobility

[Kurl4]

Vorticity

m The vorticity field propagates hydrodynamic interactions
Q=Vxu

m Plugging this into the Navier-Stokes equation yields

9
—Q=vV3Q
5 vV

m Voricity diffuses on the time scale

T="=10"s
v
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Hydrodynamic Interactions Vorticity and Mobility
Q [Dho03]

Hydrodynamic Interactions

m Every particle interacts with any other through their flow fields, i.e. they

excert forces and torques

m This coupling is scaled by the elements of the mobility tensor [z

v =
J

w; = j

J

where X
|:H’tt

nrt

=G

which is positive definite and symmetric.

> (i Fy + M)

Z(“th +NHM)
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..
Intuition

m Flow fields of particles interact with each other

m “Bow waves’ push particles away, “stern waves” attract them

./_\ .
-

m Hydrodynamic interaction transfer momentum without direct scattering
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Hydrodynamic Interactions The Oseen Matrix

The Oseen Matrix """

m Linearity of Stokes equation allows

Remember: Stokes equation for superposition of flow fields

OZHVQU—Vp+fext ~ ;
u(r) = Z/driT(r K e(iz

m In the Stokes equation the fluid
flow and the pressure are
proportional to the external force.

For a number of point forces

NV =Vp =Y fead(r —r;)

u(k) = T(k) fex (k)

nk? k2
. 11
— T(r)= — - [1+7]
87”7 r 72 < Michael Kuron
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Q Kurl4; RP69
Higher Orders ! :

m Power expansion in distance between particles, after three iterations
1a3

~ 3a rr
M =37 [0+ ]+ 55

4r

m Rotne-Prager approximation

|+55 [1-3

’l"’l“]
r2

r2

— Michael Kuron < Michael Kuron ] 10/25
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Preliminaries
Static Properties of Polymers """

m Polymers are simulated in a
coarse-grained fashion

m Monomers and bonds are
replaced by beads and
springs

m Centre of mass

1 N
R:N;Ri

m Radius of gyration

N
1
RZ T oNZ Z <(Rz - R)2> m Scaling behaviour
= (R2) o (R2) oc N>
m End to end distance

R?=(Ry — Ry)?
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Rouse Regime Preliminaries

The Langevin Equation
m Brownian motion is described by the Langevin equation
e
de2

which leads to Brownian dynamics

dx
*CE + F(xat) + f(t)

dz
with the Gaussian distributed random force f(t)
(fa(t) =0, <foz(t)f5(t/)> = 2CkpTo(t — t/)(saﬁ

m The generalised Langevin equation reads
=3 L (_ e ) ; kBTZ -

with the coupling matrices Lym
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Beads and Springs
Bead Sprmg Mode| &6 Rowssl

m Polymer has NV beads

m Each bead has a friction
coefficient ¢

m Disregard excluded volume and
hydrodynamic interactions

m Langevin equation

dR,
dt

C = _k(2Rn - RnJrl - Rnfl) + fn

m This equation has the form of /N coupled oscillators
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DE86; Rou53
Rouse Modes ' I

Introduce the normal coordinates

N
1
XP:NZRn(t)cos (%) , p=0,1,2,...
n=1

Plugging this into the Langevin equation
0
Canp = —kXp+ 1

with rescaled frictions, couplings, and forces

The motion of the polymer has been decomposed into independent modes
m The normal coordinates are correlated

ksT CN2p?
X X, = 287 o=t/ - > -
(Xpa(t) X4p(0)) = dpgdas k € v Tp 372p2kp T
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[DE86; Rou53]

Diffusion

m The inverse of the normal coordinates are

R, XO—|—2ZX cos<
p=1

)

m The coordinate X represents the centre of mass

1 N

i=1
m The mean square displacement can be related to the normal coordinates
kgT

(R(t) = R(0))%) =Y _ {(Xoa(t) — X0a(0))?) = 6!
a=x,y,z
m The self diffusion constant of the centre of mass is defined as
o1 o, kT
D= Jim o (R() ~ R0)) = =
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Diffusion
Rouse Regime [DES6; Rous3]

m Polymer was coarse-grained to o
beads and springs 10 x — T

m Langevin dynamics without
excluded volume effects

®m No hydrodynamic interactions are
present

D(N) [mm?/s]
2

m Diffusion coefficient

—4 | Lol
keT 1 107 o 100
Ne XN

D =
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Extensions to the Rouse Regime
Hydrodynamic Interactions "= “"

m Take into account hydrodynamic
interactions

B 1
Hon =1 ~—F
I:Inm = T(rnm) , n 75 m
= LL []1 + T"mrnm} —
871 T, r2

with 7,,, = R, — R,

m Langevin equation

dR, _ g oU
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[DE86; Zim56]

Zimm'’s Approximation

m The nonlinearity of IA{,L,,,, is hard to tackle

m Zimm proposed to replace H,,, by its equilibrium average

F — (Flo)., = / ARy E foa (R} 1)
1

- (6m3|n — m|)1/277b]1

=h(n—m)l

with the equilibrium distribution feq({R.},t)

m The Langevin equation becomes linear

2
%Rn(t) — %: h(n —m) (kaangm(t) + fm(t)>
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Diffusion
Diffusion in the Zimm Regime %" “™"

m Akin to the Rouse regime one can introduce normal coordinates
m This time much more sophisticated
m External potential to model excluded volume interaction
m Diffusion coefficient and relaxation
time 102 T
kT 1 .
= X wn
nNvb NV P
g
with the Flory exponent v =l
z
Q
—4 T T T T 11111
107, 100
N (1]
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Rouse vs. Zimm

kgT 1 ] kT 1
R D= — x — Z : D= X —
ouse NC < imm TN7D x
m Langevin Dynamics m Lattice-Boltzmann
X Hydrodynamic Interactions +" Hydrodynamic Interactions
10~2 T

D(N) [mm?/s]
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Hydrodynamic Screening “"

m External electric fields excert forces on polymer and solvent

m Polymer moves by electrophoresis

m Counter ions move in opposite direction by electroosmosis

m Zero net momentum transfer results in screening of hydrodynamic
interactions between monomers.

m Polymers in dense polymeric solutions

m Immersed polymers change the viscosity of the solvent
m Varying viscosity leads to faster exponential decay of hydrodynamic
interactions

XHydrodynamics
> Rouse

Zimm
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Which Regime is it?
Determining the Regime [DGK; AD99]

= g1 (t) = ((Ri(t) — Ri(to))?) o t¥/*
z=2+1/v Rouse
z2=3 Zimm

103 T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T \HHH‘ T T 1111
7=0.05
= 10!
—~ 7=0.01 o N=30
= a N =40
N =60
10! v
0 — N =30
Ll Ll Ll L LTI T TTTITIT T TTTT0

10-1 10° 10* 102 10 10* 10°
t (LJ units)
< [ADY9]
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Determining the Regime

[DGK; AD99]

m go(t) = ([(Ri(t) — R(t)) — (Ri(to) — R(t0))]?)

ga(t)

10

T x N2
T ox N3

Rouse

Zimm

T T \\HH‘ T T \\HH‘ T T \\HH‘ T T \\HH‘
7 =0.05
7=0.01 o N =30
a N =140
v N =60
: — N =30
Ll Ll L T TTTTTT T TTTTTI
0 1 10 100 1000
t (LJ units)
— [AD99]
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Which Regime is it?
Determining the Regime [DGK; AD99]

m g3(t) = (R(t) — R(tg))?) = 6Dt
D x1/N Rouse
D x1/N¥ Zimm

100
o N=30
8011 o N =40 .
. 60 v N _ 60 T = 001 °°°°°°°: AAAA
= —N=30| e
S 40— e e
20 Pt
e 7 =0.05
05 500 1,000 1,500 2,000

t (LJ units)
< [AD99]
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Which Regime is it?
Determining the Regime "

m Dynamic structure factor

Sk, 1) = = 30 (O-RCOD) oSk, 0) (K1)

,J

10° !
o * Rouse z = 3.5 [
=) S +Zimm z=3 ||
é | ""‘lz_!r“ﬂ'x.,‘\ |
n 5 N |
= -1 |
< 0 z
n r ]

0 2 4 6

k*t

— [Smi09]
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