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Hydrodynamic Interactions The Navier-Stokes equation

The Fundamental Equation of Hydrodynamics [Dho03]

The Navier-Stokes equation is a continuum approach to describe fluid
dynamics

It combines Newton’s second law with conservation of mass

It is a nonlinear partial differential equation

The fluid is characterised by its flow field u(r, t)
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Hydrodynamic Interactions The Navier-Stokes equation

Motivation of Navier-Stokes [Dho03]

Assume the standard continuity
equation

∂t%+∇ · (%u) = 0

Liquids are in general
incompressible

%(r, t) ≡ %

Assume Newton’s second law

d

dt
(%u) = fint∇ · σ̂ + fext

%%u

f intf ext

dV

Carrying out the derivative

%

(
∂

∂t
+ u · ∇

)
u = ∇ · σ̂ + fext
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Hydrodynamic Interactions The Navier-Stokes equation

Motivation of Navier-Stokes [Dho03]

Linear stress constitutive equation

σ̂ = −p11+ η [∇u+ (∇u)ᵀ]
Here an incompressible and isotropic Newtonian fluid has been assumed.

Navier-Stokes equation

for an incompressible fluid

%

(
∂

∂t
+ u · ∇

)
u = −∇p+ η∇2u+ fext

Rescaling rules

ν =
η

%
, u′ =

u

U
, p′ =

p

%U
, f ′ext =

fextL

U
,

∂

∂t′
=
L

U

∂

∂t
, ∇′ = L∇(

∂

∂t′
+ u′ · ∇′

)
u′ = −∇′p′ + ν

LU

= 1/Re Reynolds number

∇′2u′ + f ′ext

� 3/25



Hydrodynamic Interactions The Navier-Stokes equation

Reynolds number

Reynolds Number

The Reynolds number

Re =
LU

ν

is the quotient of inertial forces (LU) and viscious forces (ν).

↪→ c©Rosa

Re ≈ 10−6

↪→ c©Sauret

Re ≈ 106
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Hydrodynamic Interactions The Navier-Stokes equation

Creeping Flow [Dho03]

Reminder: Navier-Stokes equation

for an incompressible fluid in rescaled units

%

(
∂

∂t
+ u · ∇

)
u = −∇p+ η∇2u+ fext

For low Reynolds numbers Re� 1 the left hand side term can be neglected

η∇2u−∇p+ fext = 0

Continuity equation for incompressible fluid

∇ · u = 0

One has a set of two equations. The first is called creeping flow equation or
Stokes equation

Take the divergence of the Stokes equation to obtain the pressure

∇2p = ∇ · fext

� 5/25



Hydrodynamic Interactions Vorticity and Mobility

Vorticity [Kur14]

The vorticity field propagates hydrodynamic interactions

Ω = ∇× u

Plugging this into the Navier-Stokes equation yields

∂

∂t
Ω = ν∇2Ω

Voricity diffuses on the time scale

τ =
L2

ν
= 10−6 s
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Hydrodynamic Interactions Vorticity and Mobility

Hydrodynamic Interactions [Dho03]

Every particle interacts with any other through their flow fields, i.e. they
excert forces and torques

This coupling is scaled by the elements of the mobility tensor µ̂

vi =
∑
j

(µ̂tt
ijFj + µ̂

tr
ijMj)

ωi =
∑
j

(µ̂rt
ijFj + µ̂

rr
ijMj)

where

µ̂ =

[
µ̂tt µ̂tr

µ̂rt µ̂rr

]
which is positive definite and symmetric.
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Hydrodynamic Interactions Vorticity and Mobility

Intuition

Flow fields of particles interact with each other

“Bow waves” push particles away, “stern waves” attract them

F

Hydrodynamic interaction transfer momentum without direct scattering
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Hydrodynamic Interactions The Oseen Matrix

The Oseen Matrix [Dho03]

Remember: Stokes equation

0 = η∇2u−∇p+ fext

In the Stokes equation the fluid
flow and the pressure are
proportional to the external force.
For a number of point forces

η∇2u = ∇p−
∑
i

fextδ(r − ri)

u(k) = T̂(k)fext(k)

T̂(k) =
1

ηk2

[
11+

kk

k2

]
=⇒ T̂(r) =

1

8πη

1

r

[
11+

rr

r2

]

Linearity of Stokes equation allows
for superposition of flow fields

u(r) =
∑
i

∫
driT̂(r − ri) · f (i)

ext

F1

F2

−2 −1 0 1 2
−2

−1

0

1

2

↪→ Michael Kuron
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Hydrodynamic Interactions The Oseen Matrix

Higher Orders [Kur14; RP69]

Power expansion in distance between particles, after three iterations

M̂(r) =
3

4

a

r

[
11+

rr

r2

]
+

1

2

a3

r3

[
11− 3

rr

r2

]
Rotne-Prager approximation

µ̂tt
ii =

1

6πηa
11 , µ̂tt

ij =

(
1 +

1

6
a2∇j

)
M̂(ri − rj) , i 6= j

F1

F2

−2 −1 0 1 2
−2

−1

0

1

2

↪→ Michael Kuron

F1

F2

−2 −1 0 1 2
−2

−1

0

1

2

↪→ Michael Kuron � 10/25
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Rouse Regime Preliminaries

Static Properties of Polymers [Smi09]

Polymers are simulated in a
coarse-grained fashion

Monomers and bonds are
replaced by beads and
springs

Centre of mass

R =
1

N

N∑
i=1

Ri

R

C

R

R

C

R

R

C

R

R

C

R

R

C

R

R

C

R

. . . . . .

. . . . . .

Radius of gyration

R2
g =

1

2N2

N∑
i=1

〈
(Ri −R)2

〉
End to end distance

R2
e = (RN −R1)

2

Scaling behaviour

〈R2
e〉 ∝ 〈R2

g〉 ∝ N2ν
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Rouse Regime Preliminaries

The Langevin Equation [DE86]

Brownian motion is described by the Langevin equation

m
d2x

dt2
= −ζ dx

dt
+ F (x, t) + f(t)

which leads to Brownian dynamics

0 = −ζ dx
dt
−∇U + f(t)

with the Gaussian distributed random force f(t)

〈fα(t)〉 = 0 , 〈fα(t)fβ(t′)〉 = 2ζkBTδ(t− t′)δαβ

The generalised Langevin equation reads

d

dt
xn =

∑
m

L̂nm

(
− ∂U

∂xm
+ fm(t)

)
+

1

2
kBT

∑
m

∂

∂xm
L̂nm

with the coupling matrices L̂nm
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Rouse Regime Beads and Springs

Bead Spring Model [DE86; Rou53]

Polymer has N beads

Each bead has a friction
coefficient ζ

Disregard excluded volume and
hydrodynamic interactions

Re

Langevin equation

ζ
dRn

dt
= −k(2Rn −Rn+1 −Rn−1) + fn

This equation has the form of N coupled oscillators
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Rouse Regime Beads and Springs

Rouse Modes [DE86; Rou53]

Introduce the normal coordinates

Xp =
1

N

N∑
n=1

Rn(t) cos
(pπn
N

)
, p = 0, 1, 2, . . .

Plugging this into the Langevin equation

ζp
∂

∂t
Xp = −kpXp + fp

with rescaled frictions, couplings, and forces

The motion of the polymer has been decomposed into independent modes

The normal coordinates are correlated

〈Xpα(t)Xqβ(0)〉 = δpqδαβ
kBT

kp
e−t/τp , τp =

ζN2b2

3π2p2kBT
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Rouse Regime Beads and Springs

Diffusion [DE86; Rou53]

The inverse of the normal coordinates are

Rn =X0 + 2

∞∑
p=1

Xp cos
(pπn
N

)
The coordinate X0 represents the centre of mass

R =
1

N

N∑
i=1

Rn =X0

The mean square displacement can be related to the normal coordinates

〈(R(t)−R(0))2〉 =
∑

α=x,y,z

〈(X0α(t)−X0α(0))
2〉 = 6

kBT

Nζ
t

The self diffusion constant of the centre of mass is defined as

D = lim
t→∞

1

6t
〈(R(t)−R(0))2〉 = kBT

Nζ
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Rouse Regime Diffusion

Rouse Regime [DE86; Rou53]

Polymer was coarse-grained to
beads and springs

Langevin dynamics without
excluded volume effects

No hydrodynamic interactions are
present

Diffusion coefficient

D =
kBT

Nζ
∝ 1

N
10 100

10−2

10−3

10−4

N [1]
D
(N

)
[m

m
2
/s
]
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Zimm Regime Extensions to the Rouse Regime

Hydrodynamic Interactions [DE86; Zim56]

Take into account hydrodynamic
interactions

Ĥnn =
1

ζ
11

Ĥnm = T̂(rnm) , n 6= m

=
1

8πη

1

rnm

[
11+

rnmrnm
r2

]
with rnm = Rn −Rm

F

Langevin equation

dRn

dt
=
∑
m

Ĥnm ·
(
− ∂U

∂Rm
+ fm(t)

)
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Zimm Regime Extensions to the Rouse Regime

Zimm’s Approximation [DE86; Zim56]

The nonlinearity of Ĥnm is hard to tackle

Zimm proposed to replace Ĥnm by its equilibrium average

Ĥnm → 〈Ĥnm〉eq =

∫
d{Rn}Ĥnmfeq({Rn}, t)

=
1

(6π3|n−m|)1/2ηb11

≡ h(n−m)11

with the equilibrium distribution feq({Rn}, t)
The Langevin equation becomes linear

∂

∂t
Rn(t) =

∑
m

h(n−m)

(
k
∂2

∂m2
Rm(t) + fm(t)

)
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Zimm Regime Diffusion

Diffusion in the Zimm Regime [DE86; Zim56]

Akin to the Rouse regime one can introduce normal coordinates

This time much more sophisticated

External potential to model excluded volume interaction

Diffusion coefficient and relaxation
time

D =
kBT

ηNνb
∝ 1

Nν

with the Flory exponent ν

10 100

10−2

10−3

10−4

N [1]

D
(N

)
[m

m
2
/s
]

ν = 0.6
ν ≈ 0.7
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Summary Comparison: Rouse vs. Zimm

Rouse vs. Zimm

Rouse: D =
kBT

Nζ
∝ 1

N

Langevin Dynamics

8 Hydrodynamic Interactions

Zimm: D =
kBT

ηNνb
∝ 1

Nν

Lattice-Boltzmann

4 Hydrodynamic Interactions

10 100

10−2

10−3

10−4

N [1]

D
(N

)
[m

m
2
/s
]

ν = 1
ν = 0.6
ν ≈ 0.7
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Summary Transition from Zimm to Rouse

Hydrodynamic Screening [Smi09]

External electric fields excert forces on polymer and solvent

Polymer moves by electrophoresis
Counter ions move in opposite direction by electroosmosis
Zero net momentum transfer results in screening of hydrodynamic
interactions between monomers.

Polymers in dense polymeric solutions

Immersed polymers change the viscosity of the solvent
Varying viscosity leads to faster exponential decay of hydrodynamic
interactions

Zimm
8Hydrodynamics−−−−−−−−−→ Rouse
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Summary Which Regime is it?

Determining the Regime [DGK; AD99]

g1(t) = 〈(Ri(t)−Ri(t0))
2〉 ∝ t2/z{
z = 2 + 1/ν Rouse

z = 3 Zimm

τ = 0.01

τ = 0.05

10−1 100 101 102 103 104 105

10−1

101

103

t (LJ units)

g 1
(t
)

N = 30
N = 40
N = 60
N = 30

↪→ [AD99]
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Summary Which Regime is it?

Determining the Regime [DGK; AD99]

g2(t) = 〈[(Ri(t)−R(t))− (Ri(t0)−R(t0))]
2〉{

τ ∝ N2 Rouse

τ ∝ N3ν Zimm

τ = 0.01

τ = 0.05

0 1 10 100 1000

0

10

t (LJ units)

g 2
(t
)

N = 30
N = 40
N = 60
N = 30

↪→ [AD99]
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Summary Which Regime is it?

Determining the Regime [DGK; AD99]

g3(t) = 〈(R(t)−R(t0))
2〉 = 6Dt{

D ∝ 1/N Rouse

D ∝ 1/Nν Zimm

τ = 0.01

τ = 0.05

0 500 1,000 1,500 2,000
0

20

40

60

80

100

t (LJ units)

g 3
(t
)

N = 30
N = 40
N = 60
N = 30

↪→ [AD99]
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Summary Which Regime is it?

Determining the Regime [DGK; Smi09]

Dynamic structure factor

S(k, t) =
1

N

∑
i,j

〈eik(Ri(t)−Rj(t0))〉 ∝ S(k, 0)f(kzt)

0 2 4 6

10−1

100

kzt

S
(k
,t
)/
S
(k
,0
)

Rouse z = 3.5
Zimm z = 3

↪→ [Smi09]
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