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Abstract

Superconductivity is a low-temperature quantum state of matter, marked by the vanishing of electrical resistance
and the expulsion of magnetic flux fields. A thorough microscopic understand of superconductivity was gained
through the seminal theory by Bardeen, Cooper, and Schrieffer (BCS theory), in which electrons are bound
into so-called Cooper pairs by an attractive interaction in the material. In this theory the origin of the attractive
interaction is the coupling of electrons to lattice vibrations which makes electrons pair together in a relative
orbital 𝑠-wave state.

In the last decades, superconductors with properties that cannot be explained by the predictions of BCS
theory have been discovered. The pairing mechanism in these unconventional superconductors remains incom-
pletely understood, however, a symmetry-based phenomenological approach has proved to be very useful in
determining the stable superconducting states and gap structures even if the pairing mechanism is unknown.
More recently, materials with strong spin-orbit coupling have moved into the focus of attention due to their
possible unconventional superconductivity. The mixing of orbital and spin degrees of freedom imposes strong
constraints on the permissible Cooper pair structures but can be favourable for interesting exotic phenomena.

In this thesis we will theoretically study the physics of superconductors with strong spin-orbit coupling.
Using field theory techniques and group theory arguments we investigate the properties of orbitally non-
trivial pairing states. The presence of multiple bands qualitatively changes the nodal structure of an inversion-
symmetric time-reversal symmetry-breaking superconductor. Instead of point or line nodes, the gap exhibits
extended nodal pockets, called Bogoliubov Fermi surfaces.

These surfaces originate from the “inflation” of point and line nodes in the absence of time-reversal symmetry.
We present a comprehensive theory for Bogoliubov Fermi surfaces and investigate their thermodynamic stability
in a paradigmatic model. We find that a pairing state with Bogoliubov Fermi surfaces can be stabilized at
moderate spin-orbit coupling strengths. Our results show that Bogoliubov Fermi surfaces of experimentally
relevant size can be thermodynamically stable.

Strontium ruthenate (Sr2RuO4) has long been thought to be the textbook example of an odd-parity spin-
triplet chiral 𝑝-wave superconducting state. However, recent spin-susceptibility measurements have observed a
singlet-like response and cast serious doubts on this prediction. We propose an alternative even-parity pairing
state, which is consistent with the new experimental observations. This state can be energetically stable once a
realistic three-dimensional model of Sr2RuO4 is considered. This state naturally gives rise to Bogoliubov Fermi
surfaces.
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Chapter 1

Introduction

Superconductivity was discovered in 1911 by Kamerlingh Onnes [1] during experiments with liquid helium
where it was noticed that the electrical resistance of mercury vanished below a temperature of 4.2K with a
sharp drop. During experiments on the magnetic field distribution outside superconducting samples Meissner
and Ochsenfeld [2] discovered that the sample expelled the field. The phenomena of vanishing electrical
resistance and expulsion of magnetic flux fields are the defining characteristics of superconductivity. The
origin of superconductivity posed a big mystery to the physics community for a long time. After many failed
attempts [3] to describe this low-temperature state of quantummatter and the purely phenomenological theories
by Pippard [4], London and London [5], and Ginzburg and Landau [6, 7], the seminal proposal by Cooper
[8], that electrons bind together in pairs, led to the development of a comprehensive microscopic theory
of superconductivity, today known as BCS theory after its creators Bardeen, Cooper, and Schrieffer [9, 10].
During early experiments with elemental superconductors, such as Hg [11, 12], it was discovered that the critical
temperature at which superconductivity sets in is related to the ionic mass of the atoms in the crystal [13, 14].
This phenomenon is known as isotope effect and indicates that superconductivity depends on the electron lattice
interaction. This led to the identification that the attractive force that binds the electrons in pairs finds its origin
in the electron-phonon interaction [15].

The starting point of BCS theory is that the normal state of the superconductor can be accurately described
by a Fermi sea of non-interacting electrons, i.e. the normal state is a metal. The existence of a Fermi surface
simplifies the problem tremendously, because it reduces the scattering problem in the three-dimensional Fermi
sea to a two-dimensional one on the Fermi surface. This also results in the fact that superconductivity can arise
from an infinitesimal attractive interaction, whereas usually a finite attractive interaction is required to form a
bound state in three dimensions [15].

The origin of the attractive interaction is rooted in the electron-phonon coupling. This is generally assumed
to be local and momentum-independent, due to the weakness of the electron-phonon coupling and the vastly
different time-scales of electronic and lattice vibrations [15]. Because of the local pairing in combination with
Pauli’s exclusion principle, in BCS theory electrons form Cooper pairs in a spin-singlet state with a total angular
momentum of zero, i.e. a relative 𝑠-wave orbital state. However, this implies that these Cooper pairs are very
sensitive to Coulomb repulsion.

1.1 Unconventional Superconductors

The validity of BCS theory has been challenged with the discovery of unconventional superconductors, where
the experimental phenomena differ substantially from the predictions of BCS theory. Deviations were first
discovered in the heavy fermion compounds [16, 17] where the localized magnetic moments were expected to
strongly disfavor superconductivity, such as CeCu2Si2 [18], UBe13 [19], and UPt3 [20]. The most astonishing de-
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Figure 1.1. Timeline of transition temperatures in conventional and unconventional superconductors. Not all known
superconductors are listed here and the selection is opinionated. Many compounds can be grouped into families which is
indicated by colors and plotmarks. For a long time the cuprates were the only high-𝑇𝑐 family until the discovery of the iron-
based superconductors. Recently the family of the hydrides has attracted some attention, because their superconductivity is
BCS-like with a very high transition temperature.

velopment in this direction came with the discovery of “high 𝑇𝑐” superconductivity in La5−𝑥Ba𝑥Cu5O5(3−𝑦) [21]
with a critical temperature far beyond what was believed to be possible. This discovery led to an extensive
survey of related compounds sharing the copper-oxide structure. The most well-known member of the family
of these so-called cuprates are YBa2Cu3O7−𝛿 [22] (𝑇𝑐 = 93K) and Bi2Sr2CaCu2O8+𝑥 [23] (𝑇𝑐 = 105K) whose
critical temperature exceeds the melting point of liquid nitrogen which opened up the route for all kinds of
technical applications [24]. In Fig. 1.1 we show a timeline of transition temperatures in high-temperature
superconductors.

One key difference to conventional superconductors is that the cuprates, being ceramics, are insulating and
show only ambiguous signs of an isotope effect. Superconductivity develops upon doping these compounds
with holes away from the insulating state at zero doping which exhibits antiferromagnetic order. This indicates
that the mechanism behind the pairing is no longer driven by the electron-phonon interaction but by magnetic
fluctuations of the electrons themselves. However, without a strong electron-phonon interaction, the local
Coulomb repulsion cannot be overcome such that the electrons can no longer form Cooper pairs in an orbital
𝑠-wave state, because the Coulomb repulsion will drive them apart.

Formore than two decades, the cuprates stood alone as the only family of high-temperature superconductors
until superconductivity was discovered in the iron pnictides [25, 26]. Similar to the cuprates, superconductivity
in the iron pnictides also arises upon doping a parent antiferromagnetic state, however, the correlations are
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believed to be weaker than in the cuprates [27, 28].
The Fermi surface of the hole-doped cuprates is relatively simple and can be described using only a single

band. The situation is vastly different for the iron-based superconductors that were discovered during the last
decade [29–34]. In these compounds the electrons have an additional orbital degree of freedom. This results in
multiple band crossing the Fermi energy. Hence the formation of Cooper pairs within a single band may pair
electrons from different orbitals and it is also possible to pair electrons from different bands. This gives rise to a
whole new zoo of possible pairing states with exotic properties.

Recently, materials with strong spin-orbit coupling have moved into the focus of attention, due to their
unconventional superconductivity, such as the inversion symmetry-breaking compoundCePt3Si [35–37], locally
non-centrosymmetric Cu𝑥Bi2Se3 [38, 39], or the topological half-Heusler semimetal YPtBi [40]. The strong cou-
pling of spin and orbital degrees of freedom places constraints on the ways the electrons formCooper pairs. This
can nevertheless give rise to or even be beneficial for exotic phenomena such as topological superconductivity.

The class of unconventional superconductors to which the heavy-fermion systems, the cuprates, and the
iron pnictides belong remains incompletely understood until today. Whereas in the case of a conventional
superconductor, the local electron-phonon interaction always favors a spin-singlet in an orbtial 𝑠-wave state,
the existence of strong correlations in unconventional superconductors is usually detrimental to such a local
pairing state. Instead, to avoid the on-site Coulomb repulsion, electrons form pairs with higher orbital angular
momentum to reduce their probability density at the origin. This however also implies that the gap will have
nodes in momentum space. When these nodes intersect the Fermi surface the excitation spectrum is no longer
fully gapped. A superconductor gains energy over the normal state by opening a gap, however, nodal regions
do not contribute to this. Therefore, there is a delicate balance between energy loss through Coulomb repulsion
and energy gain through opening a gap.

1.2 Symmetries

Symmetry considerations are a major part of solid state physics. The structure of crystalline solids is invariant
under the operations of the space group, which combines the crystallographic point group of the unit cell
with the translations of the underlying Bravais lattice. The symmetry operations of the point group consist of
reflections, rotations, and improper rotations in symmorphic systems. Non-symmorphic systems may have
addtional screw axis and glide plane symmetries. The quantum states can then be classified according to
these symmetries within the formalism of group theory [41]. This provides us with a framework to classify
unconventional superconductors.

Since we are interested in the formation of superconductivity from fermions in a crystal, the fermions have
to be described by a normal-state Hamiltonian that is invariant under the symmetries of the lattice. The pairing
potential is also subject to these symmetries, which puts constraints on which pairing states are allowed and
enables us to classify the pairing potential according to the irreducible representations of the point group [42].
It turns out that for the cuprates the most likely pairing state is one with 𝑑𝑥2−𝑦2 -wave symmetry on the square
lattice, resulting in nodes along the Brillouin zone diagonals.

The crystallographic symmetries are not the only ones important for superconductivity. A Cooper pair is a
bound state of two fermions and therefore it has to obey the Fermi statistics and therefore change its sign under
the exchange of particles. This requirement has been named fermionic antisymmetry. Another important
property is time-reversal symmetry, which in fermionic systems is related to Kramers’ theorem which implies
a double degeneracy of states with half-integer spin in the presence of time-reversal symmetry. However, a
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Cooper pair has integer spin and can therefore spontaneously break time-reversal symmetry.
Some point groups have degenerate representations, i.e. there will be multiple allowed pairing states with the

same symmetry. Since the superconductor only has a single pairing potential, it may be a linear combination of
all the states with the same symmetry. Take as an example the 𝑝𝑥- and 𝑝𝑦-wave on the square lattice where they
occupy the 𝐸𝑢 representation. These two states transform into one another under the symmetries of the lattice
and can therefore be combined together into a (𝑝𝑥 + 𝑖𝑝𝑦)-wave state. This is referred to as a multi-component
order parameter [42, 43].

The pairing potential as a whole has a gauge freedom with respect to global phases. However, the relative
phase difference between the individual components is still important, because it might transform non-trivially
under the time-reversal operation. Generally speaking when the pairing potential has multiple components
and their relative phase differences are not real numbers, then the result will break time-reversal symmetry.

Evidence for amulti-component order parameter has been detected in a variety of compounds fromdifferent
classes, such as superfluid 3He[44], heavy-fermion superconductors, like the Uranium-based compounds
UPt3 [45, 46], UBe13 [47], and URu2Si2 [48] or PrOs4Sb12 [49, 50], the layered-perovskite Sr2RuO4 [51, 52],
the non-centrosymmetric superconductor SrPtAs [53], and epitaxial Bi/Ni bilayers [54]. The multi-component
nature of the order parameter manifests itself in broken time-reversal symmetry in most of these compounds,
but there are also superconductors where a nematic state is more favourable by the underlying microscopics,
e.g. Cu𝑥Bi2Se3 [38].

The electronic structure of the cuprates is well-described by only a single band, however, in many materials
the fermions have additional degrees of freedom, such as orbital, valley, or sublattice. For simplicity we will
refer to all of these as orbital degrees of freedom. The inclusion of an orbital degree of freedom extends the
symmetry classification and pairing states are no longer restricted to spin-singlet and -triplet. Hence an 𝑠-wave
orbital-antisymmetric spin-triplet pairing state can be in the same symmetry class as the earlier mentioned
𝑑𝑥2−𝑦2 -wave spin-singlet state. Because the orbitally non-trivial pairing state has the same symmetry it will
also give rise to nodes and appear as a 𝑑𝑥2−𝑦2 -wave form factor at the Fermi surface. Although the lack of
momentum-dependence of the pairing potential itself implies an 𝑠-wave pairing state, because it has nodes
we refer to this as an anomalous 𝑠-wave state. Orbitally non-trivial superconductivity has gained considerable
attention over the last decade and has been proposed and studied in a large number of disparate system [55–81].

1.3 Outline

This thesis is organized as follows. Chapter 2 provides an introduction to the field of unconventional supercon-
ductivity. After a brief review of the conventional BCS theory we will move on to a generalized formulation
of BCS theory and finally discuss superconductivity in multi-band systems. Using group theory arguments
we show how to classify the superconducting states according to the symmetries of the lattice. For orbitally
non-trivial pairing states in multi-band systems, this gives rise to the anomalous 𝑠-wave states.

In Chapter 3 we will combine the concepts introduced in Chapter 2 and construct multi-component order
parameters that break time-reversal symmetry from anomalous 𝑠-wave states. This can lead to interesting new
physics because broken time-reversal symmetry gives rise to a magnetic ordering that lifts the spin degeneracy
and inflates the nodes in momentum space into so-called Bogoliubov Fermi surfaces. These Fermi surfaces are
topologically protected by a ℤ2 invariant. The appearance of the Bogoliubov Fermi surfaces can be understood
in terms of a low-energy effectivemodel. We then demonstrate some of the phenomena in a paradigmaticmodel
of 𝑗 = 3/2 fermions in the cubic crystal system and discuss the possible pairing states in a phenomenological
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weak-coupling theory.
The topological protection renders the Bogoliubov Fermi surfaces robust against symmetry-preserving

perturbations. However, their existence depends on the relative thermodynamic stability of a time-reversal
symmetry-breaking pairing state in contrast to one that preserves time-reversal symmetry. To this end, in
Chapter 4 we construct the mean-field phase diagram for the paradigmatic model introduced in Chapter 3 as a
function of spin-orbit coupling and temperature. We find a rich phase diagram which supports thermodynami-
cally stable Bogoliubov Fermi surface and discuss some experimental signatures.

Recently the unconventional superconductor Sr2RuO4 [82] has attracted a lot of attention. After its discovery
in 1994 the pairing symmetry of this compound was proposed to be an odd-parity chiral 𝑝-wave state [83],
however a recent revisiting of nuclear magnetic resonance experiments has cast serious doubts on these initial
proposals [84, 85]. In Chapter 5 we propose an alternative pairing state that is consistent with the experimental
situation which is an anomalous 𝑠-wave pairing state with Bogoliubov Fermi surfaces.

We conclude in Chapter 6 and provide an outlook into future research motivated by the findings in this
thesis.
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Chapter 2

Introduction to unconventional superconductivity

In this chapter we will briefly review the formulation of conventional BCS theory and then generalise it to non-
spin-singlet pairing. Finally we will discuss some phenomena that emerge when considering superconductivity
in a system with multiple bands. These discussions lay the mathematical foundation for the subsequent chapters
and aim to provide a glimpse into the field.

2.1 BCS theory

Before we begin to generalise the BCS theory, we briefly review what is commonly known as “conventional”
BCS theory. For this we start from the pairing Hamiltonian

𝐻 = ∑
𝒌,𝜎
𝜉𝒌𝑐
†
𝒌,𝜎𝑐𝒌,𝜎 +

1
𝑁
∑
𝒌,𝒌′
𝑔𝑐†𝒌,↑𝑐

†
−𝒌,↓𝑐−𝒌′,↓𝑐𝒌′,↑, (2.1)

where the operator 𝑐𝒌,𝜎 annihilates an electron with momentum 𝒌 and spin 𝜎. The first sum describes the
normal state of the electrons, where 𝜉𝒌 = 𝜖𝒌 − 𝜇 comprises the dispersion 𝜖𝒌 and the chemical potential 𝜇. The
second term describes the pairing interaction between electrons with an effective attractive interaction potential
𝑔. In the original proposal of BCS theory, the origin of this attractive interaction is the electron-phonon
interaction [9, 10, 15].

In the next step we perform a mean-field decoupling of (2.1), i.e. we decompose a product of operators 𝐴
and 𝐵 by writing it as a sum of the expectation value and the fluctuations around it. That is to say

𝐴𝐵 = (⟨𝐴⟩ + �̃�)(⟨𝐵⟩ + �̃�), (2.2)

where ⟨⋅⟩ denotes the expectation value and tilde denotes fluctuations around the expectation value. It follows

𝐴𝐵 = ⟨𝐴⟩𝐵 + 𝐴⟨𝐵⟩ − ⟨𝐴⟩⟨𝐵⟩ + �̃��̃�. (2.3)

The mean-field approximation is now that the fluctuations around the expectation value are small and hence
the product of fluctuations will be negligible. With that we arrive at

𝐴𝐵 ≈ ⟨𝐴⟩𝐵 + 𝐴⟨𝐵⟩ − ⟨𝐴⟩⟨𝐵⟩. (2.4)

In the pairing Hamiltonian we identify the annihilation operator 𝐴 ≡ 𝑐†𝒌,↑𝑐
†
−𝒌,↓ and the creation operator

𝐵 = 𝑐−𝒌′,↓𝑐𝒌′,↑ of a Cooper pair. Then we have

𝐻MF = ∑
𝒌,𝜎
𝜉𝒌𝑐
†
𝒌,𝜎𝑐𝒌,𝜎 +

1
𝑁
∑
𝒌,𝒌′
𝑔(⟨𝑐†𝒌,↑𝑐

†
−𝒌,↓⟩𝑐−𝒌′,↓𝑐𝒌′,↑ + 𝑐

†
𝒌,↑𝑐
†
−𝒌,↓⟨𝑐−𝒌′,↓𝑐𝒌′,↑⟩ − ⟨𝑐

†
𝒌,↑𝑐
†
−𝒌,↓⟩⟨𝑐−𝒌′,↓𝑐𝒌′,↑⟩). (2.5)
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2 | introduction to unconventional superconductivity

Here we introduce the superconducting order parameter which is essentially the expectation value of a Cooper
pair creation operator

Δ ≡ 1
𝑁
∑
𝒌
𝑔⟨𝑐−𝒌,↓𝑐𝒌,↑⟩. (2.6)

This quantity is also referred to as the pairing potential. Here the pairing takes place between quasiparticles
with opposite momentum and opposite spin. Plugging in the order parameter, the Hamiltonian reads

𝐻MF = ∑
𝒌,𝜎
𝜉𝒌𝑐
†
𝒌,𝜎𝑐𝒌,𝜎 +∑

𝒌
(Δ∗𝑐−𝒌,↓𝑐𝒌,↑ + Δ𝑐

†
𝒌,↑𝑐
†
−𝒌,↓) −
𝑁|Δ|2

𝑔
. (2.7)

It is often convenient to write the resulting equation in matrix form

𝐻MF = ∑
𝒌
(𝑐†𝒌,↑ 𝑐−𝒌,↓)(

𝜉𝒌 Δ
Δ∗ −𝜉−𝒌

)(
𝑐𝒌,↑
𝑐†−𝒌,↓
) − 𝑁|Δ|

2

𝑔
+∑
𝒌
𝜉𝒌. (2.8)

The Hamiltonian can be diagonalised using the Bogoliubov transformation with the assumption that 𝜉𝒌 is even,
i.e. 𝜉𝒌 = 𝜉−𝒌. We introduce new fermionic operators 𝛾𝒌,𝜎,

𝑐𝒌,↑ = 𝑢𝒌𝛾𝒌,↑ + 𝑣𝒌𝛾
†
−𝒌,↓ , 𝑐

†
−𝒌,↓ = 𝑣

∗
𝒌𝛾𝒌,↑ + 𝑢∗𝒌𝛾

†
−𝒌,↓. (2.9)

The coefficients 𝑢𝒌 and 𝑣𝒌 are complex numbers. Their magnitude is given by

|𝑢𝒌|2 =
1
2
(1 + 𝜉𝒌
√𝜉2𝒌 + |Δ|2

), (2.10)

|𝑢𝒌|2 =
1
2
(1 − 𝜉𝒌
√𝜉2𝒌 + |Δ|2

), (2.11)

and they follow the constraint |𝑢𝒌|2 + |𝑣𝒌|2 = 1. The transformation is unitary and therefore retains the
anticommutation relations of the fermionic operators. This transformation diagonalises thematrix Hamiltonian

𝐻MF = ∑
𝒌
(𝛾†𝒌,↑, 𝛾−𝒌,↓)(

𝐸𝒌 0
0 −𝐸𝒌

)(
𝛾𝒌,↑
𝛾†−𝒌,↓
) − 𝑁
𝑔
|Δ|2 +∑

𝒌
𝜉𝒌. (2.12)

The additional last term∑𝒌 𝜉𝒌 stems from the anti-commutation relations of the fermionic operators. However,
it only contributes an overall constant energy offset, so it is usually neglected. The energy eigenvalues 𝐸𝒌
determine the excitation spectrum in the superconductor,

𝐸𝒌 = √𝜉2𝒌 + |Δ|2. (2.13)

The quasiparticles are gapped out by 2|Δ| at the Fermi surface. In Fig. 2.1 we show a quadratic dispersion of
free fermions which is gapped out by superconductivity. More details on the theory of conventional supercon-
ductivity can be found in [86].

2.2 Generalised BCS theory

However, this conventional theory of superconductivity has shortcomings. The phonon-mediated pairing it is
built upon cannot explain the unusually high critical temperatures in the cuprates and the pnictide superconduc-
tors. Superconductivity in these materials usually arises by doping away from a magnetically ordered state. As
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𝑘

𝐸(𝑘)

2Δ

Figure 2.1. The normal state dispersion is shown in blue, which is Nambu doubled. The excitation spectrum of a conven-
tional BCS superconductor is shown in orange. A full isotropic gap opens at the Fermi surface.

the magnetic order is suppressed superconductivity may emerge as a result of strong spin fluctuations [87]. For
the theory of superconductivity that means that we can no longer safely assume that 𝑔 is independent of spin
and momentum. We have to move on to a generalised BCS theory. Let us write again the pairing Hamiltonian

𝐻 = ∑
𝒌,𝜎
𝜉𝒌𝑐
†
𝒌,𝜎𝑐𝒌,𝜎 +

1
𝑁
∑
𝒌,𝒌′
𝜎1𝜎2𝜎3𝜎4

𝑉𝒌,𝒌′;𝜎1𝜎2𝜎3𝜎4𝑐
†
𝒌,𝜎1𝑐
†
−𝒌,𝜎2𝑐−𝒌′,𝜎3𝑐𝒌′,𝜎4 . (2.14)

The pairing interaction is now a complicated function of both spin and momentum. We can immediately infer
the following constraints from the anti-commutation relations of the fermionic operators in (2.14)

𝑉𝒌,𝒌′;𝜎1𝜎2𝜎3𝜎4 = −𝑉−𝒌,𝒌′;𝜎2𝜎1𝜎3𝜎4 = −𝑉𝒌,−𝒌′;𝜎1𝜎2𝜎4𝜎3 = 𝑉−𝒌,−𝒌′;𝜎2𝜎1𝜎4𝜎3 . (2.15)

Performing a mean-field decomposition analogous to the conventional case before, we identify the generalised
pairing potential as

Δ𝒌;𝜎1𝜎2 = ∑
𝒌′,𝜎3𝜎4

𝑉𝒌,𝒌′;𝜎1𝜎2𝜎3𝜎4⟨𝑐−𝒌′,𝜎3𝑐𝒌′,𝜎4⟩. (2.16)

This expectation value contains two fermionic annihilation operators, i.e. it annihilates a two-fermion state. As
such, this two-fermion state has to obey the proper statistics, which requires that the state is overall antisym-
metric under particle exchange

Δ−𝒌;𝜎2,𝜎1 = −Δ𝒌;𝜎1,𝜎2 . (2.17)

We will henceforth refer to this requirement as fermionic antisymmetry.
Analogous to the conventional theory we may write Hamiltonian in Bogoliubov-de-Gennes (BdG) form:

𝐻MF =
1
2
∑
𝒌
Ψ†𝒌 (
𝜉𝒌𝜎0 Δ(𝒌)
Δ†(𝒌) −𝜉−𝒌𝜎0

)Ψ𝒌 + 𝐾, (2.18)

with the Nambu spinor Ψ𝒌 = (𝑐𝒌,↑, 𝑐𝒌,↓, 𝑐
†
−𝒌,↑, 𝑐
†
−𝒌,↓)
𝑇 and the C-number contribution

𝐾 = ∑
𝒌
𝜉𝒌 −
1
2
∑
𝒌,𝒌′
∑
𝜎1,𝜎2,𝜎3,𝜎4

𝑉𝒌,𝒌′;𝜎1,𝜎2,𝜎3,𝜎4⟨𝑐
†
𝒌,𝜎1𝑐
†
−𝒌,𝜎2⟩⟨𝑐−𝒌′,𝜎3𝑐𝒌′,𝜎4⟩. (2.19)

The prefactor of 1/2 in front of (2.18) is due to the fact that in the Nambu spinor there are now creation and
annihilation operators for both spin up and spin down, i.e. the number of fermions has been doubled. To reverse
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the double counting, we divide by two or alternatively the momentum space summation could be limited to
only half the Brillouin zone.

The additional spin degree of freedom in the Nambu spinor implies that the pairing potential Δ(𝒌) is a 2 × 2
matrix. Because the three Pauli matrices and the unit matrix form a basis for all 2 × 2matrices, we may write
the matrix pairing potential as a linear combination.

Δ(𝒌) = (
Δ↑↑ Δ↑↓
Δ↓↑ Δ↓↓

) = 𝜓𝒌𝑖𝜎2 + 𝒅𝒌 ⋅ 𝝈𝑖𝜎2 (2.20)

where 𝝈 = (𝜎1, 𝜎2, 𝜎3)𝑇 is the vector of Pauli matrices. Now fermionic antisymmetry implies

Δ(𝒌) = −Δ𝑇(−𝒌). (2.21)

This is one of the most important principles when determining the pairing states. This means also that in the
decomposition (2.20)

𝜓𝒌 = 𝜓−𝒌 , 𝒅𝒌 = −𝒅𝒌, (2.22)

i.e. the pairing function of the singlet is always even, whereas the pairing vector of the triplet is always odd in
momentum. The matrix pairing potential is called unitary if the product ΔΔ† is proportional to the unit matrix,
otherwise it is called non-unitary.

To determine the electronic structure of the superconductor we introduce a generalised Bogoliubov trans-
formation, which now also takes into account the spin degree of freedom,

Ψ𝒌 = (
𝑢𝒌 𝑣𝒌
𝑣∗−𝒌 𝑢∗−𝒌

)Γ𝒌 , Γ𝒌 = (𝛾𝒌,+, 𝛾𝒌,−, 𝛾
†
−𝒌,+, 𝛾

†
−𝒌,−)
𝑇, (2.23)

where 𝑢𝒌 and 𝑣𝒌 are now 2 × 2matrices. This diagonalises the mean-field Hamiltonian and we find

𝐻MF =
1
2
∑
𝒌
Γ†𝒌(

𝐸𝒌,+ 0 0 0
0 𝐸𝒌,− 0 0
0 0 −𝐸−𝒌,+ 0
0 0 0 −𝐸−𝒌,−

)Γ𝒌 + 𝐾, (2.24)

where the electronic dispersions can take on the two forms

singlet: 𝐸𝒌 = 𝐸𝒌,± = √𝜉2𝒌 + |𝜓𝒌|2,

triplet: 𝐸𝒌,± = √𝜉2𝒌 + |𝒅𝒌|2 ± |𝒅𝒌 × 𝒅∗𝒌 |.
(2.25)

Here we have assumed that the pairing function has a definite parity, i.e. it is either even or odd in momentum.
This is possible if the underlying crystal has a centre of inversion and therefore the electronic states possess
inversion symmetry. We also find that the degeneracy of the excitation spectrum is lifted in the case of triplet
pairing when |𝒅𝒌 × 𝒅∗𝒌 | is non-zero.

On a side note, inversion symmetry is not a requirement and there exist materials without a centre of
inversion, such as MnSi and CePt3Si [35]. In this case singlet and triplet pairing can coexist which gives rise to
many interesting phenomena in these non-centrosymmetric superconductors [88, 89].

The energy eigenvalues in (2.25) will only vanish when 𝜉𝒌 = 0 and |𝜓𝒌| = 0 in the singlet case or |𝒅𝒌|2 ±
|𝒅𝒌 × 𝒅∗𝒌 | = 0 in the triplet case at the same time. The conditions that the superconducting term is vanishing
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Figure 2.2. The three different types of nodal gap structures. In transparent grey we show the normal-state Fermi sphere,
overlaid with the nodal lines and points in red. In the conventional BCS theory there is always a full gap, however, if we
take the spin degree of freedom into account, the gap can vanish on the normal-state Fermi surface at points or along lines.
The location of the point and line nodes in this picture is enforced by symmetry.

is only satisfied on lines or planes in momentum space, resulting in only point or line nodes on the Fermi
surface, respectively. In Fig. 2.2 we show different configurations of symmetry-enforced nodes for a quadratic
normal-state dispersion, i.e. the Fermi surface is a sphere. Generally the shape and position of these nodes is
dictated by symmetry, as we will see in the next section, but accidental nodes are possible.

2.2.1 Symmetries of the normal state

Symmetries are important for the selection of the pairing wave function, so we will study this on the example
of an electronic system with a single band in two dimensions on the square lattice, which is often used as a toy
model for the cuprates. Since we are describing electrons in a crystal system, the Hamiltonian in (2.14) must be
invariant under transformations representing the elements of the appropriate point group. The crystal structure
of the cuprates forms a tetragonal crystal system, whose associated point group is𝐷4ℎ, which we also use for
our single band system. The elements of this group are

𝐷4ℎ = {𝐸, 2𝐶4, 𝐶2, 2𝐶′2 , 2𝐶″2 , 𝐼, 2𝑆4, 𝜎ℎ, 2𝜎𝑣, 2𝜎𝑑}, (2.26)

where 𝐸 is the identity, 2𝐶4 are clockwise and counterclockwise four-fold rotations around the 𝑧 axis (principal
axis), 𝐶2 is a two-fold rotations around are the 𝑧 axis, 2𝐶′2 are two-fold rotations around the 𝑥 and 𝑦 axis, 2𝐶″2
are two-fold rotations around the axes 𝑥 = 𝑦 and 𝑥 = −𝑦, 𝐼 is inversion, 2𝑆4 are rotoinversions which are
combinations of 2𝐶4 and 𝐼, 𝜎ℎ is reflection at the 𝑧 = 0 plane, 2𝜎𝑣 are reflections at the 𝑥 = 0 and 𝑦 = 0 planes,
and 2𝜎𝑑 are reflections at the (𝑥 − 𝑦) = 0 and (𝑥 + 𝑦) = 0 planes.

In the present case there is only a single band, so we don’t have to worry about orbital degrees of freedom.
Hence we only have to look at the transformation of the spin under the crystal symmetries. A general spin
rotation by angle 𝜙 around the axis parallel to the vector 𝒏 is given by

𝐶𝒏(𝜙) = exp(−𝑖
𝜙
ℏ
𝒏 ⋅ 𝑺) with 𝑺 = ℏ

2
𝝈. (2.27)

The reflection of a spin at plane with normal vector 𝒏 is equivalent to a rotation by 𝜋 around the axis parallel to
𝒏, as illustrated in Fig. 2.3. This behaviour stems from the fact that a spin carries a magnetic dipole moment

17



2 | introduction to unconventional superconductivity

𝒏

𝜎𝒏

Reflection

= 𝒏
𝐶𝒏(𝜋)

Rotation

Figure 2.3. For a spin the symmetry operation of reflection at a plane with normal vector 𝒏 is equivalent to a rotation by 𝜋
around the axis parallel to 𝒏.

and therefore inherits the same pseudovector structure under improper rotations such as reflection. Hence the
reflection operation for spins takes the simple form

𝜎𝒏 = 𝑖𝒏 ⋅ 𝝈. (2.28)

With these generic properties we can easily derive the matrix form of the symmetry operations in𝐷4ℎ in the
basis of the Pauli matrices

𝐶4 = exp(−𝑖
𝜋
4
𝜎3), 𝐶′2(𝑥) = exp(−𝑖

𝜋
2
𝜎1), 𝐶″2 (𝑥 = 𝑦) = exp(−𝑖

𝜋
2
𝜎1 + 𝜎2
√2
),

𝜎ℎ = 𝑖𝜎3, 𝜎𝑣(𝑥) = 𝑖𝜎2, 𝜎𝑑(𝑥 = 𝑦) = 𝑖
𝜎1 − 𝜎2
√2
.

We assume the presence of an inversion centre and no non-trivial sublattice structure, such that the inversion
operator acts trivially on spin. Inversion symmetry 𝐼 is implemented by the unitary operator 𝑈𝑃

𝐼∶ 𝑈𝑃𝐻(−𝒌)𝑈
†
𝑃 = 𝐻(𝒌), 𝑈𝑃 = 𝜎0. (2.29)

Now we can determine the character of the Pauli matrices with respect to these operations. The behaviour
of the 𝑖-th Pauli matrix 𝜎𝑖 under the operation represented by the matrix Λ is determined by Λ†𝜎𝑖Λ. If this
evaluates to ±𝜎𝑖 we denote this by ±1, otherwise we give the resulting matrix. These are listed in the following
table, where we have omitted the identity and inversion because they are trivial and the rotoinversion because
it corresponds to 𝐶4 in the case that inversion is trivial

𝐶4 𝐶′2 𝐶″2 𝜎ℎ 𝜎𝑣 𝜎𝑑

𝜎0 +1 +1 +1 +1 +1 +1
𝜎1 𝜎2 +1 𝜎2 −1 −1 −𝜎2
𝜎2 −𝜎1 −1 𝜎1 −1 +1 −𝜎1
𝜎3 +1 −1 −1 +1 −1 −1

(2.30)

As we can see, the matrices 𝜎0 and 𝜎3 are closed under the set of operations, i.e. we can assign them uniquely to
an irreducible representation. The matrices 𝜎1 and 𝜎2 transform into one another under the operations, which
means that they belong to a two-dimensional irreducible representation. Comparing the character of the Pauli
matrices that we just determined with the character table of𝐷4ℎ in Tab. A.1 in the Appendix, we find

𝜎0 ∈ 𝐴1𝑔, {𝜎1, 𝜎2} ∈ 𝐸𝑔, 𝜎3 ∈ 𝐴2𝑔. (2.31)
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Having determined the transformation properties of the basis matrices we can now proceed to construct
the normal-state Hamiltonian. Since the normal-state Hamiltonian describes the motion of free electrons in
the𝐷4ℎ crystal system, it has to be invariant under the operations of the point group and therefore transform
like 𝐴1𝑔. The Hamiltonian is given by

H = ∑
𝒌
Φ†𝒌𝐻(𝒌)Φ𝒌 (2.32)

with the Nambu spinor Φ𝒌 = (𝑐𝒌,↑, 𝑐𝒌,↓) and the BdG-Hamiltonian𝐻(𝒌), which can be expanded in terms of
the basis matrices with scalar coefficients ℎ𝑖(𝒌)

𝐻(𝒌) =
4

∑
𝑖=0
ℎ𝑖(𝒌)𝜎𝑖 = 𝜉𝒌𝜎0 + 𝒍(𝒌) ⋅ 𝝈. (2.33)

This is usually expressed in the “pretty” form on the right hand side, where we have separated the spin-
independent term proportional to 𝜎0 from the spin-dependent term proportional to the Pauli vector. This form
of spin-dependent hopping is identified with spin-orbit coupling, which commonly breaks inversion symmetry.

For the Hamiltonian to transform like 𝐴1𝑔, each term has to transform like 𝐴1𝑔, which implies that the
coefficient ℎ𝑖(𝒌) has the same symmetry as the corresponding matrix 𝜎𝑖. For example, 𝜎3 transforms like 𝐴2𝑔,
therefore ℎ3(𝒌) has to transform like 𝐴2𝑔. Usually the corresponding polynomials of a few low orders are given
alongside the character table in many textbooks. Table A.2 in the Appendix lists the rotations and Cartesian
products for the𝐷4ℎ point group up to fifth order (𝑔-wave).

Further we assume that the normal-state Hamiltonian preserves time-reversal symmetry. The effect of time
reversal can be summarised by

T ∶ 𝒌 → −𝒌, |↑⟩ → |↓⟩, |↓⟩ → −|↑⟩, 𝑖 → −𝑖. (2.34)

This can be cast into the form of an anti-unitary operator T = 𝑈𝑇K, which can be written as the combination
of a unitary operator 𝑈𝑇 and the anti-unitary complex conjugation K. Applied to the BdG-Hamiltonian this
implies

T ∶ 𝑈𝑇𝐻∗(−𝒌)𝑈†𝑇 = 𝐻(𝒌), 𝑈𝑇 = 𝑖𝜎2. (2.35)

The form of the unitary part is specific to the present model with a single band.
The terms proportional to the Pauli vector must break either time-reversal or inversion symmetry, but

the 𝐷4ℎ point group requires inversion symmetry and we will further assume that time-reversal symmetry is
preserved. From Tab. A.2 in the Appendix we extract the two lowest orders for 𝐴1𝑔 and truncate the resulting
expression at nearest neighbour hopping to construct the spin-independent dispersion

𝜉𝒌 = −2𝑡(cos(𝑘𝑥𝑎) + cos(𝑘𝑦𝑎)) − 4𝑡′ cos(𝑘𝑥𝑎) cos(𝑘𝑦𝑎) − 𝜇, (2.36)

with the nearest neighbour hopping 𝑡, next-nearest neighbour hopping 𝑡′, chemical potential 𝜇, and lattice
constant 𝑎.

2.2.2 Symmetries of the pairing potential

Since the Hamiltonian (2.14) has the symmetry group of the lattice, so does the pairing potential. Similar to
the normal-state Hamiltonian, we can expand the pairing potential in the basis of the Pauli matrices with
symmetry-related coefficients.
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Figure 2.4. Types of nodal gap structures for the three momentum-dependent even-parity gap functions in (2.37). The
colour represents the sign and the magnitude of the gap normalised to the maximum in momentum space. Black solid lines
denote the normal state Fermi surface.

▶ Even-parity spin singlet

We can easily construct the singlet pairing states because they are scalar, so we simply have to choose form
factors of the appropriate symmetry from Tab. A.2 in the Appendix. For spin-singlet pairing up to next-nearest-
neighbour the possible gap functions are

irrep 𝜓𝒌 name pairing

𝐴1𝑔 Δ0 𝑠-wave on-site
Δ0(cos(𝑘𝑥𝑎) + cos(𝑘𝑦𝑎)) extended 𝑠-wave nearest neighbour

𝐵1𝑔 Δ0(cos(𝑘𝑥𝑎) − cos(𝑘𝑦𝑎)) 𝑑𝑥2−𝑦2 -wave nearest neighbour
𝐵2𝑔 2Δ0 sin(𝑘𝑥𝑎) sin(𝑘𝑦𝑎) 𝑑𝑥𝑦-wave next-nearest neighbour
𝐸𝑔 Δ0 sin(𝑘𝑧𝑎){sin(𝑘𝑥𝑎), sin(𝑘𝑦𝑎)} 𝑑𝑥𝑧/𝑑𝑦𝑧-wave next-nearest neighbour

(2.37)

Here we have left out the 𝐴2𝑔 irrep because the lowest order is 𝑔-wave, which corresponds to a next-next-next-
nearest neighbour hopping which is longer in range than the normal-state hoppings. The 𝐸𝑔 irrep can also
be discarded because we are only considering a two-dimensional system and the corresponding 𝜓𝒌 contains
an out-of-plane pairing term. The momentum-dependent pairing potentials in (2.37) all vanish along lines in
momentum space. If they happen to intersect the Fermi surface, the excitation spectrum will exhibit a node
as well, as already discussed in the context of (2.25). In Fig. 2.4 we show the magnitude of the momentum-
dependent pairing potentials in the first Brillouin zone, overlaid with the normal-state Fermi surface. The
extended 𝑠-wave (𝐴1𝑔) pairing may or may not have nodes, depending on the band parameters of the normal-
state. Because these nodes may appear by chance, they are referred to as accidental nodes. The 𝑑𝑥2−𝑦2 -wave
(𝐵1𝑔) and the 𝑑𝑥𝑦-wave (𝐵2𝑔) pairings on the other hand will always have gap nodes. These are enforced by
those symmetries that have a character of −1 in the character table Tab. A.1. Therefore, the pairing potential in
these two irreps will exhibit nodes in the corresponding mirror planes.

▶ Odd-parity spin triplet

To construct the odd-parity pairing states we have to construct a 𝒅-vector. The three components of the 𝒅-vector
are generated from rotations in Tab. A.2 in the Appendix. These rotations, however, correspond to irreps with
even parity, i.e. they are to be combined with form factors of odd parity to fulfil the requirement of fermionic
antisymmetry for the overall pairing wavefunction. To this end we have to form the products between the
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irreps with odd and even parity. When we truncate the range again at nearest-neighbour pairing, like for the
spin-singlet, we find according to Tab. A.3 in the Appendix the possible products

irrep form factor name

𝐴2𝑢 sin(𝑘𝑧𝑎) 𝑝𝑧-wave
𝐸𝑢 {sin(𝑘𝑥𝑎), sin(𝑘𝑦𝑎)} {𝑝𝑥, 𝑝𝑦}-wave

}}}}
}}}}
}

⊗
{{{{
{{{{
{

irrep rotation

𝐴2𝑔 𝜎𝑧
𝐸𝑔 {𝜎1, 𝜎2}

}}}}
}}}}
}

=

{{{{{{{{{{{{
{{{{{{{{{{{{
{

irrep 𝒅𝒌

𝐴1𝑢 sin(𝑘𝑧𝑎) ̂𝒛, sin(𝑘𝑥𝑎)�̂� + sin(𝑘𝑦𝑎) ̂𝒚
𝐴2𝑢 sin(𝑘𝑦𝑎)�̂� − sin(𝑘𝑥𝑎) ̂𝒚
𝐵1𝑢 sin(𝑘𝑥𝑎)�̂� − sin(𝑘𝑦𝑎) ̂𝒚
𝐵2𝑢 sin(𝑘𝑦𝑎)�̂� + sin(𝑘𝑥𝑎) ̂𝒚
𝐸𝑢 {sin(𝑘𝑥𝑎), sin(𝑘𝑦𝑎)} ̂𝒛, sin(𝑘𝑧𝑎){�̂�, ̂𝒚}

Since we are only interested in pairing in the plane, we can discard the 𝐴1𝑢 and the 𝐸𝑢 pairings that have
an out-of-plane component. All the other pairing states have only in-plane components. Note also that the
remaining pairings have their 𝒅-vector in the plane, with the exception of the 𝐸𝑢 pairing state that has its
𝒅-vector along ̂𝒛. Another interesting property of the odd-parity states is that their nodes are located at the
time-reversal invariant momenta 𝑘𝑥,𝑦,𝑧𝑎 = −𝜋, 0, 𝜋 of the Brillouin zone, i.e. only at the centre and at the
boundaries of the Brillouin zone. Therefore these nodes will never appear on the normal-state Fermi surface
and the excitation spectrum will remain fully gapped in the absence of fine tuning. This is illustrated in Fig. 2.5
where we show the magnitude of the gap and the orientation of the 𝒅-vector in the first Brillouin zone for the
pairing states with the 𝒅-vector in the plane.

▶ Chiral 𝑝-wave superconductivity

The 𝐸𝑢 representation is special because it has two components {sin(𝑘𝑥𝑎), sin(𝑘𝑦𝑎)} ̂𝒛 which are degenerate.
However, there is only a single pairing potential, which means that these two components may appear together
at the same time in a linear combination

𝒅𝒌 = Δ0(𝛼 sin(𝑘𝑥𝑎) + 𝛽 sin(𝑘𝑦𝑎)) ̂𝒛 , 𝛼, 𝛽 ∈ ℂ, (2.38)

with normalisation constraint |𝛼|2 + |𝛽|2 = 1. To maximise the condensation energy it is favourable to
enhance the gap magnitude over the Fermi surface so we can assume that 𝛼 and 𝛽 are chosen such that |𝒅𝒌|
is maximal [42, 90]. One such possibility is 𝛼 = 1/√2 and 𝛽 = ±𝑖/√2 which gives rise to the so-called chiral
𝑝-wave superconductivity. This pairing state is degenerate with its complex conjugate. Moving around the Γ
point the phase of the pairing potential does not return to its original value. Two cycles are necessary to restore
the initial phase. This is called phase winding and the choice of the relative sign between 𝛼 and 𝛽 defines the
direction of the phase winding which is referred to as chirality. In Fig. 2.6 we show the magnitude and the phase
of the chiral 𝑝-wave state in the first Brillouin zone.

The degeneracy of the two chiralities has another interesting consequence. The pairing potential is said to
preserve time-reversal symmetry if it satisfies

T ∶ Δ̃(𝒌) = 𝑈𝑇Δ̃∗(−𝒌)𝑈†𝑇 (2.39)

with Δ(𝒌) = Δ̃(𝒌)𝑈𝑇.
In (2.25) we had found that the excitation spectrum of a triplet superconductor is given by

𝐸𝒌,± = √𝜉2𝒌 + |𝒅𝒌|2 ± |𝒅𝒌 × 𝒅∗𝒌 | (2.40)

where the term |𝒅𝒌×𝒅∗𝒌 | lifts the degeneracy if it is non-zero. This is obviously the case if 𝒅𝒌 ≠ 𝒅∗𝒌 which implies
that 𝒅𝒌 is not invariant under time-reversal symmetry. The lifting of the excitation spectrum degeneracy can
be attributed to the lowering of global symmetry due to breaking of time-reversal symmetry [42].
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Figure 2.5.The pairing states of odd parity. The colour scale indicates the gap magnitude, the arrows point in the direction
of the 𝒅 vector. All pairing states have the same momentum dependence of the magnitude but the orientation of the 𝒅
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(phase) of the gap. The phase of the gap winds around the Brillouin zone centre by 2𝜋 for one revolution.

22



introduction to unconventional superconductivity | 2

In this context we will also further explore the concept of non-unitary pairing. Consider a pairing potential
with both, singlet and triplet components

Δ𝒌 = (𝜓𝒌 + 𝒅𝒌 ⋅ 𝝈)𝑈𝑇. (2.41)

With this we define the gap product

Δ𝒌Δ
†
𝒌 = (|𝜓𝒌|

2 + |𝒅𝒌|2)𝜎0 + 2Re[𝜓∗𝒌 𝒅𝒌] ⋅ 𝝈 + 𝑖(𝒅𝒌 × 𝒅∗𝒌 ) ⋅ 𝝈. (2.42)

The terms proportional to the unit matrix 𝜎0 are called the unitary part, the terms proportional to 𝝈 the
non-unitary part. Evidently in this case only triplet pairing states can give rise to a non-unitary gap product.

Applying the time-reversal operation to the gap product yields its time-reversed counterpart

𝑈𝑇Δ∗−𝒌(Δ
†
−𝒌)
∗𝑈†𝑇 = (|𝜓𝒌|2 + |𝒅𝒌|2)𝜎0 + 2Re[𝜓∗𝒌 𝒅𝒌] ⋅ 𝝈 − 𝑖(𝒅𝒌 × 𝒅∗𝒌 ) ⋅ 𝝈. (2.43)

Here we have used the fact that irregardless of the form of 𝑈𝑇, since 𝝈 is a spin it has to be odd under time-
reversal, i.e. 𝑈𝑇𝝈∗𝑈

†
𝑇 = −𝝈. By subtracting the time-reversed gap product from the gap product itself we can

isolate only the part that is odd under time reversal

Δ𝒌Δ
†
𝒌 − 𝑈𝑇Δ

∗
−𝒌(Δ
†
−𝒌)
∗𝑈†𝑇 = 2𝑖(𝒅𝒌 × 𝒅∗𝒌 ) ⋅ 𝝈. (2.44)

Because this expression is quadratic in the pairing potential, we refer to is as the time-reversal odd bilinear
(TROB).

To gain further insight into the consequences of a non-unitary pairing state and its relation to broken
time-reversal symmetry, we consider the spin polarisation Tr[Δ†𝒌𝝈Δ𝒌] of the pairing state at 𝒌. Because the
Pauli matrices are traceless, this will only be non-vanishing if the pairing state is non-unitary. Those states that
give rise to a finite spin-polarisation are also referred to as ferromagnetic [42]. The onset of the spin polarisation
coincides with the onset of superconductivity and its magnitude scales with the pairing potential squared.

▶ Thermodynamic response

The superconducting states that we have discussed here survey a range of different nodal structures that serves
as a good basis to discuss low-temperature properties of unconventional superconductors. In an isotropic
𝑠-wave superconductor with a full gap there are no low-lying collective excitations because the spectrum is
completely gapped out. This naturally leads to exponential dependence of physical observables, such as the
specific heat or the relaxation time of nuclear magnetic resonance. In unconventional superconductors the
excitations across point or line nodes close the gap in the excitation spectrum momentarily and modify the
response functions.

The density of states is generically defined as

𝜌(𝜔) = ∑
𝒌
𝛿(𝜔 − 𝐸𝒌) (2.45)

where 𝐸𝒌 are the energy eigenvalues of the Hamiltonian. First, for a conventional 𝑠-wave superconductor with
a full isotropic gap across the Fermi surface the density of states is zero inside the gap

𝜌(𝜔) = 0 (𝜔 < Δ). (2.46)

To discuss the effect of point nodes we move to a rotationally symmetric system in three dimensions which
is given by the Anderson-Brinkham-Morel state (𝐴-phase) of superfluid 3He [91]. This state is analogous to the
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chiral 𝑝-wave pairing state discussed earlier, but the Fermi surface is a sphere and therefore has point nodes at
the poles. In this case the density of states scales as 𝜔2 at low energies

𝜌(𝜔) = 𝜔2 (𝜔 ≪ Δ). (2.47)

Finally for a state with line nodes the density of states scales like

𝜌(𝜔) = 𝜔 (𝜔 ≪ Δ), (2.48)

at low energies. The scaling behaviour of the density of states at low energies in the cases discussed here only
depends on the topology of the gap, i.e. is independent of the location of the nodes.

The density of states is closely related to other physical observables such as the specific heat 𝐶, the magnetic
penetration depth 𝜆, and the relaxation time of nuclear magnetic resonance 𝑇1 [42, 92, 93]. Nodes in the
excitation spectrum give rise to characteristic power-law behaviour at low temperatures in these thermodynamic
quantities, which we briefly summarise in the following table

gap 𝜌(𝜔) 𝐶(𝑇) 𝜆(𝑇) 1/𝑇1

gapless const 𝑇 𝑇
full gap 0 𝑇−2𝑒−Δ/𝑘𝐵𝑇 no generic form 𝑇−1/2𝑒−Δ/𝑘𝐵𝑇

line nodes 𝜔 𝑇2 𝑇 𝑇3

point nodes 𝜔2 𝑇3 𝑇2 𝑇5

(2.49)

2.3 Superconductivity in multiband systems

In many materials the electronic structure is more complicated and involves electrons with more than one
degree of freedom. These additional degrees of freedom can be of different kinds such as multiple orbitals in
many transition metal compounds, like the iron pnictide superconductors [25], different “valleys” in hexagonal
systems [94], or non-equivalent sublattices, e.g. in Cu𝑥Bi2Se3 [38]. These additional degrees of freedom are
generally non-degenerate and give rise to multiple bands [95]. When multiple bands cross the Fermi surface
we have to reformulate and generalise our mean-field theory to take this into account

𝐻MF = ∑
𝒌,𝜎
∑
𝑛∈bands
𝜉𝒌,𝑛𝑐
†
𝒌,𝑛,𝜎𝑐𝒌,𝑛,𝜎 + ∑

𝒌,𝜎,𝜎′
∑

𝑛,𝑛′∈bands
(Δ𝑛,𝜎;𝑛′,𝜎′ (𝒌)𝑐

†
𝒌,𝑛,𝜎𝑐
†
−𝒌,𝑛′,𝜎′ + h.c.), (2.50)

where the index 𝑛 enumerates the bands and 𝜉𝒌,𝑛 is the free dispersion of band 𝑛. We note that the pairing
potential Δ𝑛,𝜎;𝑛′,𝜎′ (𝒌) has acquired two new band indices and an additional distinction in the classification of
the superconducting gap is possible. The fermionic antisymmetry of the Cooper pair can also be encoded in
the band index. If both band indices are the same, i.e. 𝑛 = 𝑛′, electrons from the same band form a Cooper
pair which is referred to as intraband pairing. On the other hand, if the band indices are not equal, i.e. 𝑛 ≠ 𝑛′,
electrons from different bands form Cooper pairs which is referred to as interband pairing. This is illustrated
with two bands in Fig. 2.7. Generally, at the Fermi surface the bands are well separated, so we would expect
interband pairing to be weak. Nevertheless, it leads to interesting physics because it has profound impacts on
the symmetry classification.
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Figure 2.7. Illustration of the difference between intra- and interband pairing in a model with two bands (solid lines)
coloured in blue and orange, each displayed with its particle-hole-reversed counterpart (dashed lines) due to fermion
doubling. Superconductivity pairs electrons on opposite sides of the spectrum, which is indicated by arrows. While
intraband pairing (Δ11 and Δ22) opens a gap at the Fermi level, interband pairing opens a gap away from the Fermi surface
(Δ12).

2.3.1 Raghu’s model

Since the detection of superconductivity with high transition temperature in the family of the iron pnictides a
lot of effort has been invested into understanding the pairing mechanism in these compounds [30–32, 96, 97].
The superconductivity in the iron pnictides is most likely unconventional as evidenced by the resonance peak
observed in neutron-scattering experiments which implies that the gap has different sign on different sheets of
the Fermi surface [98]. Furthermore, signatures of magnetic excitations in the superconducting state in inelastic
neutron scattering experiments suggest a direct coupling between the superconductivity andmagnetism, akin to
the heavy-fermion superconductors, such as UPt3 [99, 100]. Thermodynamic probes, such as the discontinuity
of the specific heat, scale differently in the iron pnictides than in conventional superconductors (Δ𝐶 ∝ 𝑇3𝑐 vs.
𝑇2𝑐 in conventional superconductors) [25, 101–104]. Electronic correlations in these materials are thought to be
weak [27, 105, 106].

To describe the superconductivity in these compounds theoretically, several models were proposed starting
from all five 3𝑑 orbitals of the Fe atoms [107, 108]. Others showed that it is possible to capture the basic
physics with fewer orbitals [109–111]. The full five-orbital models are generally considered necessary for detailed
quantitative calculations. However, these are very unwieldy, and so simpler models capturing the essence of
the physics are useful. The most popular of these reduced models is the one proposed by Raghu et al. [111] who
developed a minimal two-band model for the superconducting Fe-pnictides. The states at the Fermi surface
are derived from the 3𝑑 orbitals of the Fe atoms which disperse only weakly in the 𝑧 direction. It was shown
by Raghu et al. [111] and Mazin et al. [112] that the plethora of bands can be reduced, approximating the band
structure by two effective orbitals of 𝑑𝑥𝑧 and 𝑑𝑦𝑧 character which are degenerate at each site of a square lattice
in two dimensions. The point group of the iron pnictides is 𝐷4ℎ, so we can extend the discussion from the
previous section.

The basis of the Nambu spinors has increased due to the additional orbital degree of freedom. Orbital
and spin degrees of freedom are independent and therefore the classification of the basis matrices in spin
space from the previous section still applies. Because the orbital degree of freedom also has two components,
it can be expressed in Pauli matrices that form a basis of all 2 × 2 matrices. The effect of the point group
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symmetry operations on the orbitals can be derived by considering the transformation properties of the angular
momentum, which is shown in Appendix B.1. Here we summarise the matrix form of these operations

𝐶4 ∶ (
𝑑𝑦𝑧 → −𝑑𝑥𝑧
𝑑𝑥𝑧 → 𝑑𝑦𝑧

) ≡ (
0 1
−1 0
) , (2.51)

𝐶2(𝑥) ∶ (
𝑑𝑦𝑧 → 𝑑𝑦𝑧
𝑑𝑥𝑧 → −𝑑𝑥𝑧

) ≡ (
1 0
0 −1
) , (2.52)

𝐶2(𝑥 = 𝑦)∶ (
𝑑𝑦𝑧 → −𝑑𝑥𝑧
𝑑𝑥𝑧 → −𝑑𝑦𝑧

) ≡ (
0 −1
−1 0
) , (2.53)

𝜎ℎ ∶ (
𝑑𝑦𝑧 → −𝑑𝑦𝑧
𝑑𝑥𝑧 → −𝑑𝑥𝑧

) ≡ (
−1 0
0 −1
) , (2.54)

𝜎𝑣(𝑥) ∶ (
𝑑𝑦𝑧 → −𝑑𝑦𝑧
𝑑𝑥𝑧 → 𝑑𝑥𝑧

) ≡ (
−1 0
0 1
) , (2.55)

𝜎𝑑(𝑥 = 𝑦)∶ (
𝑑𝑦𝑧 → 𝑑𝑥𝑧
𝑑𝑥𝑧 → 𝑑𝑦𝑧

) ≡ (
0 1
1 0
) , (2.56)

𝐼∶ (
𝑑𝑦𝑧 → 𝑑𝑦𝑧
𝑑𝑥𝑧 → 𝑑𝑥𝑧

) ≡ (
1 0
0 1
) . (2.57)

To avoid confusion we denote the Pauli matrices in orbital space by 𝜂. The character of these matrices under
the symmetry operations of the𝐷4ℎ point group is summarised in the following table

𝐶4 𝐶′2 𝐶″2 𝜎ℎ 𝜎𝑣 𝜎𝑑

𝜂0 +1 +1 +1 +1 +1 +1
𝜂1 −1 −1 +1 +1 −1 +1
𝜂2 +1 −1 −1 +1 −1 −1
𝜂3 −1 +1 −1 +1 +1 −1

(2.58)

Comparing this with the character table for𝐷4ℎ in Tab. A.1 in the Appendix we infer that the matrices can be
assigned irreducible representations as such

𝜂0 ∈ 𝐴1𝑔, 𝜂1 ∈ 𝐵2𝑔, 𝜂2 ∈ 𝐴2𝑔, 𝜂3 ∈ 𝐵1𝑔. (2.59)

To construct the normal-state Hamiltonian we limit ourselves to terms that are even under time-reversal
symmetry. To verify this we evaluate the condition (2.39) for the direct product of orbital and spin matrices.
For the spin degree of freedom the unitary part of the time-reversal operator is represented by 𝑖𝜎2. We further
assume that time-reversal acts trivially on the orbitals, i.e. is represented by 𝜂0. This leads to 𝑈𝑇 = 𝑖𝜂0𝜎2. With
this we evaluate

𝑈𝑇(𝜂𝜈𝜎𝜇)∗𝑈
†
𝑇 = ±𝜂𝜈𝜎𝜇 (2.60)

where the sign determines whether it is odd or even under time-reversal. In the present case where 𝑈𝑇 is
antisymmetric, i.e. 𝑈𝑇𝑇 = −𝑈𝑇, this leads to another property. We also use the fact that the Pauli matrices are
Hermitian, i.e. 𝜎𝑖 = 𝜎

†
𝑖 and therefore 𝜎∗ = 𝜎𝑇. Using these properties we can perform some straight-forward
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matrix manipulation on (2.60)

𝑈𝑇(𝜂𝜈𝜎𝜇)∗𝑈
†
𝑇 = ±𝜂𝜈𝜎𝜇

−(𝜂𝜈𝜎𝜇𝑈𝑇)𝑇𝑈
†
𝑇 = ±𝜂𝜈𝜎𝜇 | ⋅ 𝑈𝑇

−(𝜂𝜈𝜎𝜇𝑈𝑇)𝑇 = ±𝜂𝜈𝜎𝜇𝑈𝑇. (2.61)

This relation crossed us earlier in (2.21) under the name fermionic antisymmetry and is the necessary require-
ment for the existence of an even-parity pairing state. Therefore we can conclude that any matrix that is even
under time-reversal symmetry, also gives a valid even-parity pairing state. We can therefore summarise time-
reversal symmetry and fermionic antisymmetry in a single table, where +1 (−1) indicates that the corresponding
direct product is (is not) symmetric under both operations

𝜎0 𝜎1 𝜎2 𝜎3

𝜂0 +1 −1 −1 −1
𝜂1 +1 −1 −1 −1
𝜂2 −1 +1 +1 +1
𝜂3 +1 −1 −1 −1

(2.62)

We have determined the irreps that the spin and orbital Pauli matrices belong to in (2.31) and (2.59), respec-
tively. The irreps of the resulting direct products can be determined from the product table of𝐷4ℎ in Tab. A.3
in the Appendix. In the following table we show the irreps for all possible direct products, the ones allowed by
time-reversal symmetry and fermionic antisymmetry are enclosed in brackets

𝜎0 𝜎1 𝜎2 𝜎3

𝜂0 [𝐴1𝑔] 𝐸𝑔 𝐸𝑔 𝐴2𝑔
𝜂1 [𝐵2𝑔] 𝐸𝑔 𝐸𝑔 𝐵1𝑔
𝜂2 𝐴2𝑔 [𝐸𝑔] [𝐸𝑔] [𝐴1𝑔]
𝜂3 [𝐵1𝑔] 𝐸𝑔 𝐸𝑔 𝐵2𝑔

(2.63)

The non-bracketed terms are not antisymmetric with respect to exchange of spin and orbital degrees of freedom.
This implies that pairing states involving these must be odd in momentum to maintain overall fermionic
antisymmetry. Taking into account orbital degrees of freedom, the pairing wavefunction can also contain same
spins if it is antisymmetric in the orbital degree of freedom.

The introduction of the additional orbital degree of freedom gives rise to a rich structure. We summarise
the result of the classification again in the following table

(𝑎, 𝑏) 𝐶4 𝐶′2 𝐶″2 𝜎ℎ 𝜎𝑣 𝜎𝑑 irrep spin orbital

(0, 0) +1 +1 +1 +1 +1 +1 𝐴1𝑔 singlet even
(2, 3) +1 +1 +1 +1 +1 +1 𝐴1𝑔 triplet odd

(3, 0) −1 +1 −1 +1 +1 −1 𝐵1𝑔 singlet even

(1, 0) −1 −1 +1 +1 −1 +1 𝐵2𝑔 singlet even

(2, 1) +(2, 2) −1 −(2, 2) −1 +1 +(2, 2) 𝐸𝑔 triplet odd
(2, 2) −(2, 1) +1 −(2, 1) −1 −1 +(2, 1) 𝐸𝑔 triplet odd

(2.64)
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We proceed to construct the normal-state Hamiltonian similar to (2.33). If we take all of the allowed terms
from (2.64) into account and truncate the hoppings at next-nearest neighbours we arrive at

𝐻 = ∑
𝑎,𝑏
ℎ𝑎𝑏𝜂𝑎𝜎𝑏 = 𝜖0(𝒌)𝜂0𝜎0 + 𝜖𝑥2−𝑦2 (𝒌)𝜂3𝜎0 + 𝜖𝑥𝑦(𝒌)𝜂1𝜎0 + 𝜆𝜂2𝜎3 + 𝜆𝑥𝑧(𝒌)𝜂2𝜎1 + 𝜆𝑦𝑧(𝒌)𝜂2𝜎2. (2.65)

The first term is already familiar, it describes the spin-independent hopping and is the same as for the single-
band model. The second term is also spin-independent but has opposite signs on each orbital which is why it
is referred to as orbital-anisotropic hopping. The third term is also spin-independent but exchanges the two
orbitals which is why it is referred to as inter-orbital hopping. The remaining terms are anisotropic in both
orbital and spin, so it comes as no surprise that they are referred to as spin-orbit coupling terms. The last two
terms have form factors from the 𝐸𝑔 irreducible representation. However, as already noted in the single-band
model, these do not have any in-plane components, so we will neglect them from now on.

It is generally possible in the presence of time-reversal and inversion symmetry to block diagonalise the
Hamiltonian. Neglecting the 𝒌-dependent spin-orbit coupling terms has the advantage that it brings the
Hamiltonian in block diagonal form with one block for each spin sector

𝐻 = (
𝐻𝑠=+1 0
0 𝐻𝑠=−1

) , (2.66)

where each block can be parameterised with the spin quantum number 𝑠 as

𝐻𝑠 = 𝜖0(𝒌)𝜂0 + 𝜖𝑥2−𝑦2 (𝒌)𝜂3 + 𝜖𝑥𝑦(𝒌)𝜂1 + 𝑠𝜆𝜂2 = (
𝜖0(𝒌) + 𝜖𝑥2−𝑦2 (𝒌) 𝜖𝑥𝑦(𝒌) − 𝑠𝑖𝜆
𝜖𝑥𝑦(𝒌) + 𝑠𝑖𝜆 𝜖0(𝒌) + 𝜖𝑥2−𝑦2 (𝒌)

) . (2.67)

Diagonalising each block yields eigenvalues

𝐸± = 𝜖0 ± √𝜖2𝑥2−𝑦2 + 𝜖
2
𝑥𝑦 + 𝜆2. (2.68)

In Fig. 2.8 we show the resulting band structure along a high-symmetry path in the Brillouin zone and the
Fermi surface using the band parameters from [111] with a small spin-orbit coupling. The inclusion of spin-orbit
coupling lifts the band degeneracy at the Γ andMpoints in the Brillouin zone. Without this additional spin-orbit
term, there would be an artificial four-fold degeneracy at the these points. Note that the Fermi surface shows
strong orbital polarisation.

2.3.2 Pseudospin basis

The fact that the Hamiltonian is even under inversion and time-reversal symmetry leads to a double degeneracy
of the states. This makes it possible to find a unitary transform which allows these states to transform under
inversion and time-reversal like a spin. This can be summarised as

I𝜓±,⇑(𝒌) = 𝜓±,⇑(−𝒌) , I𝜓±,⇓(𝒌) = 𝜓±,⇓(−𝒌)

T 𝜓±,⇑(𝒌) = 𝜓±,⇓(−𝒌) , T 𝜓±,⇓(𝒌) = −𝜓±,⇑(−𝒌),
(2.69)

where ⇑ and ⇓ label the pseudospin up and down states and ± is the band index. Additionally the pseudospin
basis can be chosen such that the states also transform like a spin under the symmetries of the lattice.

The simplicity of Raghu’s model and the fact that it can be diagonalised analytically makes it a nice candidate
to discuss the pseudospin basis. Generally, the pseudospin is not equivalent to the electronic spin. To diagonalise
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Figure 2.8. Electronic structure of Raghu’s model in the presence of weak spin-orbit coupling. (a) Band structure along
high symmetry lines in the first Brillouin zone. The band splitting at the Γ and M point is equal to the spin-orbit coupling
strength. Without the inclusion of spin-orbit coupling there would be an artificial four-fold degeneracy at these points. (b)
Fermi surface with hole pockets 𝛼1,2 and electron pockets 𝛽1,2. The colour scale indicates the 𝑑𝑥𝑧 orbital content on each
sheet.

Raghu’s model, we exploit the fact that every 2×2matrix can be written as a linear combination of Pauli matrices.
In particular it can be written in terms of the Pauli vector

𝐻 = 𝑑0𝜂0 + 𝒅𝒌 ⋅ 𝜼 , 𝒅𝒌 = |𝒅|(
sin 𝜃𝒌 cos𝜙𝒌
sin 𝜃𝒌 sin𝜙𝒌

cos 𝜃𝒌

) (2.70)

where we parameterise the orientation of the coefficient vector 𝒅 in spherical coordinates. For Raghu’s model
the parameters are given by

𝑑0 = 𝜖0, (2.71)

|𝒅| = √𝜖2𝑥2−𝑦2 + 𝜖
2
𝑥𝑦 + 𝜆2, (2.72)

𝜃𝒌 = arccos(
𝜖𝑥2−𝑦2

√𝜖2𝑥2−𝑦2 + 𝜖
2
𝑥𝑦 + 𝜆2
), (2.73)

𝜙𝒌 = arctan(
𝜆
𝜖𝑥𝑦
). (2.74)

The eigenvalues are given by

𝐸𝒌,± = 𝑑0 ± |𝒅| = 𝜖0 ± √𝜖2𝑥2−𝑦2 + 𝜖
2
𝑥𝑦 + 𝜆2, (2.75)

and the eigenvectors can be expressed in terms of the angular parameters

𝜓𝒌,𝑠,+ = (
cos(𝜃𝒌/2)𝑒−𝑖𝑠𝜙𝒌

sin(𝜃𝒌/2)
) , 𝜓𝒌,𝑠,− = (

sin(𝜃𝒌/2)𝑒−𝑖𝑠𝜙𝒌

− cos(𝜃𝒌/2)
) . (2.76)
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Lining these up in the basis of (2.65), we find the following form of the pseudospin basis

𝜓𝒌,+,⇑ =(

𝑒−𝑖𝜙 cos(𝜃/2)
0

sin(𝜃/2)
0

) , 𝜓𝒌,−,⇑ =(

𝑒−𝑖𝜙 sin(𝜃/2)
0

− cos(𝜃/2)
0

) , (2.77)

𝜓𝒌,+,⇓ =(

0
−𝑒𝑖𝜙 cos(𝜃/2)
0

− sin(𝜃/2)

) , 𝜓𝒌,−,⇓ =(

0
−𝑒𝑖𝜙 sin(𝜃/2)
0

cos(𝜃/2)

) . (2.78)

These obey the transformation properties in (2.69) and therefore, albeit unsurprisingly, we have found a good
pseudospin basis.

We now arrange the eigenvectors 𝜓𝒌,𝑠,± as columns of a unitary matrix 𝑈, which serves as our pseudospin
transformation. Obviously this pseudospin transformation diagonalises the normal-state Hamiltonian

�̃� = 𝑈†𝐻𝑈 = (
𝐸𝒌,+ 0
0 𝐸𝒌,−

) . (2.79)

Writing the full BdG-Hamiltonian in this band basis reveals an interesting structure

�̃�BdG = (
�̃�(𝒌) Δ̃
Δ̃† −�̃�𝑇(−𝒌)

) = (
𝑈†𝐻(𝒌)𝑈 𝑈†Δ𝑈∗

𝑈𝑇Δ†𝑈 −𝑈𝑇�̃�𝑇(−𝒌)𝑈∗
) (2.80)

The blocks on the diagonal are now diagonal themselves which means that we have changed from the original
orbital and spin basis into a band and pseudospin basis. This also implies that the off-diagonal block can now
be separated into intra- and interband contributions. Indeed, we can generically express the pairing potential
of an even-parity state in the pseudospin basis as

Δ̃ = 𝑈†Δ𝑈∗ = (
𝜓𝒌,+𝑖𝑠2 (𝜓𝒌,𝐼 − 𝑖𝒅𝒌 ⋅ 𝒔)𝑖𝑠2

(𝜓𝒌,𝐼 + 𝑖𝒅𝒌 ⋅ 𝒔)𝑖𝑠2 𝜓𝒌,−𝑖𝑠2
) , (2.81)

where 𝒔 = (𝑠1, 𝑠2, 𝑠3)𝑇 is the Pauli vector of pseudospin operators and with the intraband pairing potentials 𝜓𝒌,±,
the interband singlet pairing potential 𝜓𝒌,𝐼, and the interband triplet pairing potential 𝒅𝒌. The diagonal blocks
of this matrix are the intraband pairing contributions, whereas the off-diagonal blocks denote the interband
pairing contributions. The intraband pairing has no triplet component because of inversion symmetry. Hence
an even-parity pairing state always implies an intraband pseudospin singlet, whereas an odd-parity pairing
state implies an intraband pseudospin triplet. The interband components cannot be simplified in such a way
and are just generic 2 × 2matrices. However, they can still be decomposed into a part that is even and a part
that is odd under inversion. Independent of the basis the pairing potential has to obey the requirement of
fermionic antisymmetry which relates the two off-diagonal blocks to one another and results in a sign change
in the pseudospin-triplet component. The prefactor of 𝑖 was introduced to ensure that 𝒅𝒌 is a vector with only
real entries in the absence of time-reversal symmetry breaking.

Projecting all the allowed pairing states into the pseudospin basis and isolating only the intraband pairing
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potentials 𝜓𝒌,± gives the expressions listed in the following table:

irrep Δ 𝜓±(𝒌) interband

𝐴1𝑔 𝜂0 ⊗ 𝜎0 1 no

𝐴1𝑔 𝜂2 ⊗ 𝜎3 ± 𝜆

√𝜆2 + 𝜖𝑥2−𝑦2 (𝑘)2 + 𝜖𝑥𝑦(𝑘)2
yes

𝐵1𝑔 𝜂3 ⊗ 𝜎0 ±
𝜖𝑥2−𝑦2 (𝑘)

√𝜆2 + 𝜖𝑥2−𝑦2 (𝑘)2 + 𝜖𝑥𝑦(𝑘)2
yes

𝐵2𝑔 𝜂1 ⊗ 𝜎0 ±
𝜖𝑥𝑦(𝑘)

√𝜆2 + 𝜖𝑥2−𝑦2 (𝑘)2 + 𝜖𝑥𝑦(𝑘)2
yes

𝐸𝑔 {𝜂2 ⊗ 𝜎1, 𝜂2 ⊗ 𝜎2} 0 yes

(2.82)

The first column lists the different irreducible representations, the second column gives the matrix pairing
potential in the orbital and spin basis, the third columns lists the functional form of the intraband pairing
potential, and the last column indicates whether this state has a non-zero interband pairing potential.

The matrix pairing potentials that are listed in the second column are independent of momentum. However,
by projecting these a priori momentum-independent pairing states into the pseudospin basis, they pick up
a momentum dependence, i.e. they interact with the spin-orbital texture of the Fermi surface. This implies
that, e.g. the 𝜂3𝜎0 pairing state in 𝐵1𝑔 will give rise to an 𝑑𝑥2−𝑦2 -wave state at the Fermi surface, because the
same nodal structure is enforced by mirror symmetry. Since the matrix pairing potential is of 𝑠-wave type it
is the same throughout the whole Brillouin zone, which implies that when the intraband pairing potential is
vanishing at a node, the interband pairing potential is maximal.

Generally 𝑑-wave pairing is thought to arise from nearest-neighbour interactions. However, in this case
the orbitally non-trivial 𝐵1𝑔 state can arise from local pairings, because it is independent of momentum. It may
still give rise to an effective form factor at the Fermi surface that is reminiscent of those states that arise from
nearest-neighbour interaction. However, as we find from (2.82), some sort of hopping or spin-orbit coupling
has to exist in the out-of-plane direction to stabilise such a pairing state by opening an intraband gap at the
Fermi surface. In fact, this concept has been generalised and formulated in a rigorous manner and is now
known as the “superconducting fitness” [113, 114].

A related situation arises in quasi-two-dimensional materials, where hopping in the out-of-plane direction
exists but is heavily suppressed. This usually leads to the assumption that nearest-neighbour pairings in
the out-of-plane direction must also be suppressed and can be neglected. Nevertheless, orbitally non-trivial
superconductivity with local pairings can still give rise to a pairing state that resembles one with an out-of-plane
component at the Fermi surface.

The pairing state realised in the Fe pnictides is an 𝑠±-wave pairing state. It has a full gap on all sheets of
the Fermi surface but reverses sign between the electron-like and the hole-like pockets. It can be written as an
orbitally trivial spin-singlet pairing state with an appropriate form factor

Δ𝒌 = Δ0 cos(𝑘𝑥𝑎) cos(𝑘𝑦𝑎)𝜂0𝜎0(𝑖𝜎2). (2.83)

The magnitude and the sign of the gap in the first Brillouin zone are shown in Fig. 2.9(a).
However, it is hard to reconcile this pairing state with the observation of nodeless superconductivity in

A𝑥Fe2Se2 [115] and single-layer FeSe [116], where the hole pockets are absent. Their absence jeopardises the
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Figure 2.9. Possible pairing states for 𝑠± pairing in the Fe pnictides. (a) An orbitally trivial pairing state with a higher
harmonic form factor in the 𝐴1𝑔 irrep will have a full gap on each Fermi surface but reverse sign between the two bands.
(b) An orbitally non-trivial pairing state can have the same properties but higher orbital angular momentum to avoid the
Coulomb interaction.

phase cancellation between the electron and hole pockets which minimises the on-site Coulomb repulsion. It
is also hard to explain how the system could easily transition from a nodeless 𝑠± state to a nodal state upon
doping away the electron pockets in Ba1−𝑥K𝑥Fe2As2 [117]. To rectify this shortcoming, it was pointed out by
Ong et al. [58] that there is another possibility for an𝐴1𝑔 pairing state that has the same properties. This pairing
state is constructed by multiplying a matrix from 𝐵1𝑔 and 𝐵2𝑔 with a form factor of the same irrep, respectively.
This product will end up in 𝐴1𝑔 and will have the required structure at the Fermi surface

Δ𝒌 = Δ0(𝛼[cos(𝑘𝑥𝑎) − cos(𝑘𝑦𝑎)]𝜂3𝜎0 + 𝛽 sin(𝑘𝑥𝑎) sin(𝑘𝑦𝑎)𝜂1𝜎0)(𝑖𝜎2), (2.84)

where 𝑠± pairing is realised for the coefficients 𝛼 and 𝛽 of the same sign. The gap magnitude in the first Brillouin
zone one the two different bands is shown in Fig. 2.9(b).

Orbitally non-trivial superconductivity in the iron pnictides was also discussed by Vafek and Chubukov
[118] who proposed a pairing mechanism with only local interactions. In this mechanism orbitally non-trivial
pairing states are independent of the intra-orbital Coulomb repulsion. Renormalized interaction parameters
give rise to an effective attractive interaction for these anomalous 𝑠-wave channels. The resulting pairing state
is consistent with the experiments on KFe2As2.
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Chapter 3

Bogoliubov Fermi surfaces

The material presented in this chapter has been published previously in

[133] P. M. R. Brydon, D. F. Agterberg, H. Menke, and C. Timm, “Bogoliubov Fermi surfaces: General theory,
magnetic order, and topology”, Phys. Rev. B 98, 224509 (2018).

In the previous discussion we have encountered full gaps and gaps with point and line nodes. However,
it was recently understood that in inversion-symmetric multiband superconductors that break time-reversal
symmetry these nodes may inflate into extended nodal surfaces in the Brillouin zone. These surfaces were
named Bogoliubov Fermi surfaces and were first reported in [66]. Below we will formulate a comprehensive
theory of these Bogoliubov Fermi surfaces, investigating their emergence and phenomena.

3.1 General Theory

As already mentioned, Bogoliubov Fermi surfaces only emerge in centrosymmetric multiband superconductors.
Therefore we will start from themost general two-bandHamiltonian with time-reversal and inversion symmetry,
which describes fermions with two internal degrees of freedom apart from spin, be it orbital, sublattice, or
valley. To simplify the discussion we will just always refer to this internal degree of freedom as orbital. As we
saw previously in Section 2.3.1 a two-band Hamiltonian contains one orbitally trivial term and several orbitally
non-trivial terms, cf. (2.65). Any such Hamiltonian can be written as

𝐻0 = (𝜖𝒌,0 − 𝜇)𝟙 + ⃗𝜖𝒌 ⋅ ⃗𝛾, (3.1)

where ⃗𝜖𝒌 = (𝜖𝒌,1,… , 𝜖𝒌,5) and ⃗𝛾 = (𝛾1,… , 𝛾5) with five anti-commuting Dirac matrices 𝛾𝑖 (𝑖 = 1,… , 5)
satisfying the Clifford algebra {𝛾𝑎, 𝛾𝑏} = 2𝛿𝑎𝑏, real coefficients 𝜖𝒌,𝑖, and the chemical potential 𝜇. Assuming that
the inversion operator is trivial, inversion symmetry dictates that the real coefficients 𝜖𝒌,𝑖 are even functions of
𝒌, i.e. 𝜖𝒌,𝑖 = 𝜖−𝒌,𝑖. The Dirac matrices 𝛾𝑖 may be chosen such that 𝛾1,2,3 are real and 𝛾4,5 are complex. Then the
time-reversal operator is given as T = 𝛾4𝛾5K = 𝑈𝑇K where K denotes complex conjugation.

In the absence of symmetry breaking and interactions the eigenvalues of𝐻0 are two-fold degenerate for
each spin direction. We distinguish these two bands by the ± index. The eigenvalues are given by 𝐸𝒌,± −𝜇where

𝐸𝒌,± = 𝜖𝒌,0 ± | ⃗𝜖𝒌|. (3.2)

Adding in superconductivity, an even-parity pairing potential likewise has to be even under inversion
symmetry and therefore only pairing matrices that are even under inversion may appear. The most general
matrix pairing potential consistent with this is

Δ𝒌 = 𝜂𝒌,0𝑈𝑇 + ⃗𝜂𝒌 ⋅ ⃗𝛾 𝑈𝑇 (3.3)
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with complex pairing amplitudes 𝜂𝒌,𝑖 that are even in momentum and the unitary part of the time-reversal
operator 𝑈𝑇. The first term which is proportional to the unit matrix describes pairing between time-reversed
partners from the same orbital. This has previously been named “internally isotropic”. The the second term
describes the pairing between states which are not time-reversed partners. These states are referred to as
“internally anisotropic”.

The presence of inversion and time-reversal symmetry guarantees that we can label our states with a
pseudospin index 𝑠. States labelled by the pseudospin shall transform according to (2.69). Transforming the
pairing into the pseudospin basis it assumes the general form given by (2.81). The intraband part of the pairing
is always independent of the choice of the pseudospin basis and can be expressed as

𝜓𝒌,± = 𝜂𝒌,0 ±
⃗𝜖𝒌 ⋅ ⃗𝜂𝒌
| ⃗𝜖𝒌|

(3.4)

On the other hand, the form of the interband pairing depends on the choice of the pseudospin basis but it must
satisfy the generic relation

|𝜓𝒌,𝐼|2 + |𝒅𝒌|2 = | ⃗𝜂𝒌|2 −
| ⃗𝜖𝒌 ⋅ ⃗𝜂𝒌|2

| ⃗𝜖𝒌|2
. (3.5)

We note at this point that the above expression for the interband pairing potential only involves internally
anisotropic pairings, whereas the internally isotropic channel only appears in the expression for the intraband
part.

3.1.1 Non-unitary pairing

We have already seen previously in (2.42) that the presence of internally anisotropic channels implies that
pairing is non-unitary, i.e. the product of the gap with its Hermitian conjugate is not proportional to the unit
matrix. In the orbital basis this reads

Δ(𝒌)Δ†(𝒌) = (|𝜂𝒌,0|2 + | ⃗𝜂𝒌|2)𝟙4 + 2Re(𝜂∗𝒌,0 ⃗𝜂𝒌) ⋅ ⃗𝛾 + ∑
𝑛>𝑚>0
2𝑖 Im(𝜂𝒌,𝑛𝜂∗𝒌,𝑚)𝛾𝑛𝛾𝑚. (3.6)

The first term is the unitary part, proportional to the unit matrix and is the only one that includes the internally
isotropic channel. The two other terms that can only be non-vanishing in the presence of orbitally non-trivial
pairing channels. More precisely, these terms are only non-zero if there aremultiple components in the internally
anisotropic channel. Additionally for the last term to be non-zero there has to be a non-trivial phase difference
between the components.

The gap product may also be expressed in the pseudospin basis where it leads to the rather large expression

Δ̃(𝒌)Δ̃†(𝒌) = [1
2
(|𝜓𝒌,+|2 + |𝜓𝒌,−|2) + |𝜓𝒌,𝐼|2 + |𝒅𝒌|2]𝟙

+(
1
2 (|𝜓𝒌,+|

2 − |𝜓𝒌,−|2)𝑠0 + (𝑖𝒅𝒌 ×𝒅∗𝒌 +2 Im(𝜓𝒌,𝐼𝒅∗𝒌 )) ⋅ 𝒔 (𝜓𝒌,+𝜓∗𝒌,𝐼 +𝜓∗𝒌,−𝜓𝒌,𝐼)𝑠0 + 𝑖(𝜓𝒌,+𝒅∗𝒌 +𝜓∗𝒌,−𝒅𝒌) ⋅ 𝒔
(𝜓𝒌,−𝜓∗𝒌,𝐼 +𝜓∗𝒌,+𝜓𝒌,𝐼)𝑠0 − 𝑖(𝜓∗𝒌,+𝒅𝒌 +𝜓𝒌,−𝒅∗𝒌 ) ⋅ 𝒔

1
2 (|𝜓𝒌,−|

2 − |𝜓𝒌,+|2)𝑠0 + (𝑖𝒅𝒌 ×𝒅∗𝒌 −2 Im(𝜓𝒌,𝐼𝒅∗𝒌 )) ⋅ 𝒔
) .

(3.7)

The diagonal entries of the non-unitary part are going to be important later. In particular the terms proportional
to the Pauli vector of pseudospin matrices, because these give rise to an effective pseudospin polarisation
Tr[Δ†(𝒌)P𝒌,± ̌𝒔P𝒌,±Δ(𝒌)] with projection operators P𝒌,± onto the normal-state Hilbert space and

̌𝒔 ≡ (
𝒔 0
0 𝒔
) . (3.8)
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As mentioned before, these contributions arise from the fact that time-reversal symmetry is broken and we
indicated that these stem entirely from the presence of internally anisotropic pairing channels. To gain some
more insight we therefore examine only the part of the gap product that is odd under time-reversal. That is to
say we form the gap product and subtract its time-reversed form.

Δ𝒌Δ
†
𝒌 − 𝑈𝑇Δ

∗
−𝒌Δ𝑇−𝒌𝑈

†
𝑇 = ( ⃗𝜂𝒌 ⋅ ⃗𝛾)( ⃗𝜂∗𝒌 ⋅ ⃗𝛾) − ( ⃗𝜂∗𝒌 ⋅ ⃗𝛾)( ⃗𝜂𝒌 ⋅ ⃗𝛾) (3.9)

= ∑
𝑖,𝑗
(𝜂𝑖𝜂∗𝑗 − 𝜂∗𝑖 𝜂𝑗)𝛾𝑖𝛾𝑗 (3.10)

There is no physical observable related to this operator which is quadratic in the gap amplitude and it is generally
referred to as time-reversal odd bilinear (TROB) [119].

3.1.2 Topological protection

In addition to inversion symmetry (or parity symmetry) P that we required earlier, the BdG Hamiltonian of
superconductivity has an additional particle-hole symmetry. Particle-hole symmetry (or charge-conjugation
symmetry) C is anti-unitary. It is less of a symmetry in the classic sense, because that means that it could be
spontaneously broken. Instead, from a mathematical perspective particle-hole symmetry is a consequence of
the Nambu doubling and is therefore an intrinsic property of any single-particle BdG-Hamiltonian without
interactions. In a superconductor particle-hole symmetry is dictated by the fermionic antisymmetry of the
pairing wave function which means that any superconducting Hamiltonian can be written in the BdG-form.
Its functional form C = 𝑈𝐶K can be detailed as follows

C ∶ 𝑈𝐶𝐻∗(−𝒌)𝑈†𝐶 = −𝐻(𝒌), 𝑈𝐶 = 𝜏𝑥 ⊗ 𝟙. (3.11)

The combination of both these symmetries is denoted as CP and acts on the Hamiltonian like

CP ∶ 𝑈𝐶𝑃𝐻∗(𝒌)𝑈†𝐶𝑃 = −𝐻(𝒌), 𝑈𝐶𝑃 = 𝑈𝐶𝑈∗𝑃 = 𝜏𝑥 ⊗ 𝟙. (3.12)

This leads to the property (CP)2 = +1 which guarantees the existence of a Pfaffian [66, 120–122]. This implies
that the Bogoliubov Fermi surfaces are topologically protected against CP-preserving perturbations. The
Hamiltonian can be unitarily transformed into skew-symmetric form

�̃�𝒌 = Ω𝐻𝒌Ω†, (3.13)

with the Majorana transformation

Ω = 1√2
(
1 1
𝑖 −𝑖
) ⊗ 𝟙. (3.14)

For a skew-symmetric matrix, the determinant can be written as the square of a polynomial, which is called the
Pfaffian and is defined for a 2𝑁 × 2𝑁 skew-symmetric matrix 𝐴 as

Pf(𝐴) = 1
2𝑁𝑁!
∑
𝜎∈𝑆2𝑁

sgn(𝜎)𝐴𝜎(1),𝜎(2)⋯𝐴𝜎(2𝑁−1),𝜎(2𝑁), (3.15)

where 𝑆2𝑁 is the set of 2𝑁 permutations and sgn(𝜎) is the parity of the permutation 𝜎. By definition it holds
that Pf(𝐴)2 = det(𝐴). For �̃�𝒌 the Pfaffian takes the form

𝑃(𝒌) = Pf �̃�𝒌 = (⟨𝜖�̲�, 𝜖�̲�⟩⟩ − ⟨𝜂�̲�, 𝜂∗�̲� ⟩)
2 + 4|⟨𝜖�̲�, 𝜂�̲�⟩|2 + ⟨𝜂�̲�, 𝜂�̲�⟩⟨𝜂∗�̲� , 𝜂∗�̲� ⟩ − ⟨𝜂�̲�, 𝜂∗�̲� ⟩2, (3.16)
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with the six-vectors
𝜖�̲� = (𝜖𝒌,0−𝜇, ⃗𝜖𝒌) , 𝜂�̲� = (𝜂𝒌,0, ⃗𝜂𝒌), (3.17)

and the covariant product
⟨𝑎,̲ �̲�⟩ = 𝑎0𝑏0 − ⃗𝑎 ⋅ �⃗�. (3.18)

The corresponding topological invariant is defined as [66]

(−1)𝑙 = sgn[𝑃(𝒌−)𝑃(𝒌+)], (3.19)

where 𝒌± are momenta inside and outside the Bogoliubov Fermi surface, respectively. At the Bogoliubov Fermi
surface itself the Pfaffian vanishes.

Evidently, the first two terms in the expression for the Pfaffian 𝑃(𝒌) are strictly positive, due to the square,
whereas the contribution of the two latter terms may change the overall sign of 𝑃(𝒌). This can be made more
explicit by writing the pairing potential as an amplitude and a phase, i.e. 𝜂𝒌,𝑛 = |𝜂𝒌,𝑛|𝑒𝑖𝜙𝒌,𝑛 . Then the last two
terms read

⟨𝜂�̲�, 𝜂�̲�⟩⟨𝜂∗�̲� , 𝜂∗�̲� ⟩−⟨𝜂�̲�, 𝜂∗�̲� ⟩2 = 4 ∑
𝑛>0
|𝜂𝒌,0|2|𝜂𝒌,𝑛|2 sin2(𝜙𝒌,0−𝜙𝒌,𝑛)−4 ∑

𝑛>𝑚>0
|𝜂𝒌,𝑛|2|𝜂𝒌,𝑚|2 sin2(𝜙𝒌,𝑛−𝜙𝒌,𝑚) (3.20)

The first term shows that coexistence of internally isotropic and anisotropic channels does not constitute a sign
change of the Pfaffian. Only the coexistence of multiple components of the internally anisotropic channels may
lead to a negative contribution, but only if their relative phases are non-trivial, i.e. if the overall superconducting
state breaks time-reversal symmetry. The negative contribution is maximal if time-reversal symmetry is broken
maximally, i.e. the relative phase between components is 𝜋/2. Interestingly the presence of this term is also
equivalent to the existence of the time-reversal odd bilinear and therefore the non-unitary part of the gap
product that leads to a non-zero pseudospin polarisation.

3.2 Effective low-energy model

To gain further understanding about the origin of the Bogoliubov Fermi surfaces and make a more direct
connection with the non-unitary pairing we will now study how the pseudomagnetic field influences the states
at the Fermi surface. To this end we project the Hamiltonian into a pseudospin basis

�̃�𝒌 = (
𝐻𝒌,+ 𝐻𝒌,𝐼
𝐻†𝒌,𝐼 𝐻𝒌,−

) (3.21)

where the intra- and interband blocks are given by

𝐻𝒌,± = (
𝐸𝒌,±𝑠0 𝜓𝒌,±(𝑖𝑠2)
−𝜓∗𝒌,±𝑖𝑠2 −𝐸𝒌,±𝑠0

) , 𝐻𝒌,𝐼 = (
0 (𝜓𝒌,𝐼 − 𝑖𝒅𝒌 ⋅ 𝒔)𝑖𝑠2

−(𝜓∗𝒌,𝐼 + 𝑖𝒅∗𝒌 ⋅ 𝒔)𝑖𝑠2 0
) . (3.22)

If the bands are split far apart, then interband pairing𝐻𝒌,𝐼 can be assumed to be weak and we can treat it as
a perturbation to the intraband Hamiltonian𝐻𝒌,±. To this end we extract the Green’s function of the above
Hamiltonian

(𝑖𝜔𝑛 − �̃�𝒌)𝐺(𝒌, 𝑖𝜔𝑛) = (
𝑖𝜔𝑛 − 𝐻𝒌,+ 𝐻𝒌,𝐼
𝐻†𝒌,𝐼 𝑖𝜔𝑛 − 𝐻𝒌,−

)(
𝐺+(𝒌, 𝑖𝜔𝑛) 𝐺𝐼(𝒌, 𝑖𝜔𝑛)
𝐺†𝐼 (𝒌, 𝑖𝜔𝑛) 𝐺−(𝒌, 𝑖𝜔𝑛)

) = 𝟙 (3.23)
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We are interested in the Green’s functions of both bands, so we solve the resulting Gor’kov equations for them
and find

𝐺−1+ (𝒌, 𝑖𝜔𝑛) = 𝑖𝜔𝑛 − 𝐻𝒌,+ − 𝐻𝒌,𝐼(𝑖𝜔𝑛 − 𝐻𝒌,−)−1𝐻
†
𝒌,𝐼 ≡ 𝑖𝜔𝑛 − 𝐻

eff
𝒌,+, (3.24)

𝐺−1− (𝒌, 𝑖𝜔𝑛) = 𝑖𝜔𝑛 − 𝐻𝒌,− − 𝐻
†
𝒌,𝐼(𝑖𝜔𝑛 − 𝐻𝒌,+)

−1𝐻𝒌,𝐼 ≡ 𝑖𝜔𝑛 − 𝐻eff𝒌,−, (3.25)

where we have defined the effective Hamiltonian𝐻eff𝒌,± for each band. At this point we have not applied any
approximation and the effective Hamiltonian still contains the full dynamics of the interband pairing. The
most naïve approximation is to completely neglect the interband pairing which is equivalent to dropping the
off-diagonal block in (3.21). This means for the effective Hamiltonian that

𝐻eff𝒌,+ ≈ 𝐻𝒌,±. (3.26)

Essentially we have completely decoupled the two bands from each other and are now left with two independent
“copies” of a single-band superconductor. However, we already know the physics of single-band superconductors
and we know well that the only nodal structure that can arise in this situation are point and/or line nodes. This
implies that only internally anisotropic terms give rise to Bogoliubov Fermi surfaces and therefore interband
pairing is expected to be important which is not present in𝐻𝒌,±, as only the intraband part 𝜓𝒌,±(𝑖𝑠2) appears.

Hence we have to take into account the second term in the effective Hamiltonian. Treating this term in
full is not tractable and since we are only interested in its influence on the states right at the Fermi surface we
can apply the static limit 𝜔𝑛 = 0 because only energies close to zero are relevant [70]. Below we apply this
approximation to the Green’s function for the + band, but the steps for the − band are analogous. The correction
to the Hamiltonian for the + is given by

𝛿𝐻𝒌,+ = 𝐻𝒌,𝐼(𝑖𝜔𝑛 − 𝐻𝒌,−)−1𝐻
†
𝒌,𝐼 ≈ −𝐻𝒌,𝐼𝐻

−1
𝒌,−𝐻
†
𝒌,𝐼 (3.27)

We have assumed that the bands are split far apart, so we may further assume that the gap on the opposite band
is vanishing 𝜓𝒌,± = 0 and therefore the Hamiltonian of the opposite band simplifies to𝐻𝒌,± ≈ (𝐸𝒌,± − 𝜇)𝑠0𝜏3.
This Hamiltonian is diagonal, so its inverse is trivial to compute

𝛿𝐻𝒌,+ ≈ −(𝐸𝒌,− − 𝜇)−1𝐻𝒌,𝐼𝑠0𝜏3𝐻
†
𝒌,𝐼. (3.28)

Furthermore we may assume that the same band is approximately constant and equal to the chemical potential
𝜇 ≈ 𝐸𝒌,∓ at the Fermi surface, so the effective Hamiltonian is inversely proportional to the band splitting

𝛿𝐻𝒌,+ ≈ −(𝐸𝒌,− − 𝐸𝒌,+)−1𝐻𝒌,𝐼𝑠0𝜏3𝐻
†
𝒌,𝐼 (3.29)

= − 1
2| ⃗𝜖𝒌|
𝐻𝒌,𝐼𝑠0𝜏3𝐻

†
𝒌,𝐼. (3.30)

These steps may be performed analogously for the other band and results in the expression

𝛿𝐻𝒌,− ≡ 𝐻
†
𝒌,𝐼(𝑖𝜔𝑛 − 𝐻𝒌,+)

−1𝐻𝒌,𝐼 ≈ −
1
2| ⃗𝜖𝒌|
𝐻†𝒌,𝐼𝑠0𝜏3𝐻𝒌,𝐼. (3.31)

We know that𝐻𝒌,𝐼 has only off-diagonal elements, which means that the product with 𝑠0𝜏3 will turn 𝛿𝐻𝒌,±
into a block diagonal matrix, where we can further write the blocks as a decomposition of pseudospin Pauli
matrices

𝛿𝐻𝒌,± = (
𝛿𝜖𝒌,±𝑠0 + 𝛿𝒉𝒌,± ⋅ 𝒔 0

0 −𝛿𝜖𝒌,±𝑠0 − 𝛿𝒉𝒌,± ⋅ 𝒔𝑇
) , (3.32)
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Plugging in the form of𝐻𝒌,𝐼 we find

𝛿𝜖𝒌,± = ±
|𝜓𝒌,𝐼|2 + |𝒅𝒌|2

2| ⃗𝜖𝒌|
, (3.33)

𝛿𝒉𝒌,± = ±
𝑖𝒅𝒌 × 𝒅∗𝒌 − 2 Im[𝜓𝒌,𝐼𝒅∗𝒌 ]

2| ⃗𝜖𝒌|
= −

Tr[P𝒌,±Δ𝒌Δ†𝒌P𝒌,± ̌𝒔]
2| ⃗𝜖𝒌|

, (3.34)

where the term 𝛿𝜖𝒌,± describes a shift of the chemical potential and 𝛿𝒉𝒌,± acts like a magnetic field on the
pseudospin, hence the name pseudomagnetic field. First of all we note that 𝛿𝜖𝒌,± is generally non-zero in the
presence of internally anisotropic pairing channels and does not require broken time-reversal symmetry. Its
effect is to shift the nodes of the superconducting gap away from the original Fermi surface. This phenomenon
has been noted before inmodels for orbitally non-trivial superconductivity in the iron based superconductors [59,
60]. The pseudomagnetic field 𝛿𝒉𝒌,± on the other hand only emerges if the superconductivity breaks time-
reversal symmetry. Its effect on the low energy states is analogous to a realmagnetic field as it lifts the pseudospin
degeneracy and shifts the nodes to finite energies, forming pockets that have been named Bogoliubov Fermi
surfaces. Another interesting observation about the pseudomagnetic field is that its functional form is directly
related to the gap product projected into the pseudospin sector. Hence, the existence of Bogoliubov Fermi
surfaces is deeply linked to the non-unitarity of the gap.

The eigenvalues of the low-energy effective Hamiltonian can easily be computed and are given by

𝐸eff𝒌,± = 𝛼|𝛿𝒉𝒌,±| + 𝛽√(𝐸𝒌,± + 𝛿𝜖𝒌,± − 𝜇)2 + |𝜓𝒌,±|2 (3.35)

with the two signs 𝛼, 𝛽 = ±1 which may be chosen independently.

3.3 Paradigmatic model

As a paradigmatic model Hamiltonian for Bogoliubov Fermi surfaces is the Luttinger-Kohn Hamiltonian for
𝑗 = 3/2 fermions of the cubic point group 𝑂ℎ [123, 124] has been established, because its functional form is
relatively simple with only four band parameters. Two of the band parameters control spin-orbit coupling,
which can be tuned such that the Hamiltonian preserves full rotational SO(3) symmetry, rather than “just”
𝑂ℎ. Coupling of an 𝑙 = 1 orbital angular momentum with 𝑠 = 1/2 spins gives rise to states with total angular
momentum 𝑗 = 3/2 and 𝑗 = 1/2, see Appendix B.2 for a derivation. Assuming that the 𝑗 = 3/2 and 𝑗 = 1/2
states are well-separated in energy and only the 𝑗 = 3/2 bands are close to the Fermi energy, it is possible
to neglect the 𝑗 = 1/2 states and arrive at a model of purely 𝑗 = 3/2 fermions. It is also the model in which
Bogoliubov Fermi surfaces were first numerically detected by Carsten Timm [66].

The Luttinger-Kohn Hamiltonian was originally devised to describe the low-energy electronic structure of
zinc-blende semiconductors [125]. It generically features a quadratic band touching point and has since been
applied to describe pyrochlore iridates [126–129] and half-Heusler compounds [64, 130–132]. In the context
of superconductivity and Bogoliubov Fermi surfaces the Luttinger-Kohn Hamiltonian was originally used to
discuss the pairing states in the half-Heusler compound YtPtBi [64] where it describes a 𝒌 ⋅ 𝒑 theory for the
𝑗 = 3/2 fermions of the Γ8 band that arise from the strong atomic spin-orbit coupling of 𝑠 = 1/2 spins with
𝑙 = 1 orbital angular momentum. The Hamiltonian is given by

𝐻0 = ∑
𝒌
Φ†𝒌𝐻𝒌Φ𝒌 (3.36)
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with Φ𝒌 = (𝑐𝒌,3/2, 𝑐𝒌,1/2, 𝑐𝒌,−1/2, 𝑐𝒌,−3/2)𝑇 where 𝑐𝒌,𝜎 is the annihilation operation of a fermion with momentum
𝒌 and spin 𝜎 and the BdG-Hamiltonian

𝐻𝒌 = (𝛼|𝒌|2 − 𝜇) + 𝛽∑
𝑖
𝑘2𝑖 𝐽2𝑖 + 𝛾∑

𝑖≠𝑗
𝑘𝑖𝑘𝑗𝐽𝑖𝐽𝑦, (3.37)

where 𝑖 = 𝑥, 𝑦, 𝑧 and 𝑖 +1 = 𝑦 if 𝑖 = 𝑥, etc., and 𝐽𝑖 are the 4×4matrix representations of the angular momentum
operators 𝑗 = 3/2 which are given by

𝐽𝑥 =
1
2
(

0 √3 0 0
√3 0 2 0
0 2 0 √3
0 0 √3 0

), 𝐽𝑦 =
𝑖
2
(

0 −√3 0 0
√3 0 −2 0
0 2 0 −√3
0 0 √3 0

), 𝐽𝑧 =
1
2
(

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

).

(3.38)
The band parameters comprise a spin-independent dispersion coefficient 𝛼, the chemical potential 𝜇, and the
symmetry-allowed spin-orbit coupling terms proportional to 𝛽 and 𝛾. The Hamiltonian has doubly degenerate
eigenvalues given by (𝐸𝒌,± − 𝜇) with

𝐸𝒌,± = (𝛼 +
5
4
𝛽)|𝒌|2 ± 𝛽√∑

𝑖
[𝑘4𝑖 + (
3𝛾2

𝛽2
− 1)𝑘2𝑖 𝑘2𝑖+1]. (3.39)

The band structure has a four-fold degenerate quadratic band touching point at Γ. Away from Γ spin-orbit
coupling 𝛽, 𝛾 ≠ 0 lifts the four-fold degeneracy, yet the bands remain doubly degenerate. This allows for the
states to be labelled by a pseudospin-1/2 index [133]. If the band splitting controlled by 𝛽 and 𝛾 is small, both
bands curve the same way and there are two Fermi surfaces. For large band splitting one of the bands can curve
in opposite directions and there is only a single Fermi surface. This latter situation is referred to as inverted
band structure.

We can bring this Hamiltonian into the form of (3.1) using the parameterization

𝜖𝒌,0 = (𝛼 + 5𝛽/4)𝑘2 − 𝜇, (3.40)

𝜖𝒌,1 =
1
2
𝛽(𝑘2𝑧 −

1
2
(𝑘2𝑥 + 𝑘2𝑦)) 𝛾1 =

1
3
(2𝐽2𝑧 − 𝐽2𝑥 − 𝐽2𝑦), (3.41)

𝜖𝒌,2 =
√3
2
𝛽(𝑘2𝑥 − 𝑘2𝑦) 𝛾2 =

1
√3
(𝐽2𝑥 − 𝐽2𝑦), (3.42)

𝜖𝒌,3 = √3𝛾𝑘𝑦𝑘𝑧 𝛾3 =
1
√3
(𝐽𝑦𝐽𝑧 + 𝐽𝑧𝐽𝑦), (3.43)

𝜖𝒌,4 = √3𝛾𝑘𝑥𝑘𝑧 𝛾4 =
1
√3
(𝐽𝑥𝐽𝑧 + 𝐽𝑧𝐽𝑥), (3.44)

𝜖𝒌,5 = √3𝛾𝑘𝑥𝑘𝑦 𝛾5 =
1
√3
(𝐽𝑥𝐽𝑦 + 𝐽𝑦𝐽𝑥). (3.45)

In this choice 𝛾1,2,4 are real and 𝛾3,5 are complex. Hence the time-reversal operator is given by

𝑈𝑇 = 𝛾5𝛾3 =(

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

) (3.46)
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At this point it is important to note that the parameterization that we have chosen here is not unique and
was selected merely for convenience of notation. We will use this parameterization of the Luttinger-Kohn
Hamiltonian to highlight generic features of Bogoliubov Fermi surfaces.

Adding in superconductivity the most general even-parity pairing potential is given by [64–67, 71, 72, 75–77,
79, 134–136]

Δ𝒌 = ∑
𝑙
𝜂𝒌,𝑙Γ𝑙 (3.47)

where the 𝜂𝒌,𝑙 are complex pairing amplitudes and Γ𝑙 are pairing matrices which can be classified according to
the irreducible representations of the point group

𝐴1𝑔 ∶ Γ𝑠 = 𝑈𝑇, (3.48)

𝐸𝑔 ∶ Γ3𝑧2−𝑟2 = 𝛾1𝑈𝑇 =
1
3
(2𝐽2𝑧 − 𝐽2𝑥 − 𝐽2𝑦)𝑈𝑇, (3.49)

Γ𝑥2−𝑦2 = 𝛾2𝑈𝑇 =
1
√3
(𝐽2𝑥 − 𝐽2𝑦)𝑈𝑇, (3.50)

𝑇2𝑔 ∶ Γ𝑦𝑧 = 𝛾3𝑈𝑇 =
1
√3
(𝐽𝑦𝐽𝑧 + 𝐽𝑧𝐽𝑦)𝑈𝑇, (3.51)

Γ𝑥𝑧 = 𝛾4𝑈𝑇 =
1
√3
(𝐽𝑥𝐽𝑧 + 𝐽𝑧𝐽𝑥)𝑈𝑇, (3.52)

Γ𝑥𝑦 = 𝛾5𝑈𝑇 =
1
√3
(𝐽𝑥𝐽𝑦 + 𝐽𝑦𝐽𝑥)𝑈𝑇. (3.53)

The single internally isotropic singlet-channel occupies the 𝐴1𝑔 representation. The internally anisotropic
channels, which represent Cooper pairs with total angular momentum 𝐽 = 2, i.e. quintet states, split into the
two-component 𝐸𝑔 and three-component 𝑇2𝑔 representations. As mentioned in the previous chapter, since the
time-reversal operator is antisymmetric, fermionic antisymmetry is equivalent to time-reversal symmetry and
therefore all the single-matrix pairing potentials above are even under and therefore preserve time-reversal
symmetry. Assuming only local pairings, the interaction Hamiltonian can be written in the general form

𝐻pair = ∑
𝑗
∑
𝑙
∑
𝑙𝑖∈𝑙
𝑉𝑙𝑏
†
𝑙𝑖,𝑗𝑏𝑙𝑖,𝑗, (3.54)

where the fermion bilinear 𝑏†𝑙𝑖,𝑗 is the annihilation operator of a Cooper pair at site 𝑗 in channel 𝑙𝑖 belonging to
the irrep 𝑙 and 𝑉𝑙 is the interaction potential in that irrep [64].

3.3.1 Weak-coupling pairing states from symmetry

In weak-coupling theory the pairing state that is realised below the critical temperature 𝑇𝑐 is the one that
minimises the mean-field free energy. We will pursue this approach later, but first we will take a look at the
Landau expansion of the free energy. This purely phenomenological theory is based on the concept of symmetry-
breaking, where the macroscopic order parameter has a lower symmetry in the low-temperature ordered phase
than in the high-temperature unordered phase. The macroscopic order parameter vanishes above the critical
temperature but attains a finite value below.

In the Landau expansion of the free energy the order parameter is related to gap amplitudes which transform
under symmetry operations of the point group in the same way. Since the free energy is derived from the
Hamiltonian, it shall transform equivalently under symmetry operations. To obtain all the allowed terms in the
expansion, product groups of appropriate order have to be formed and only the terms that transform trivially
are kept. This is laborious and has been done previously for several different point groups in [42].
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For the point group 𝑂ℎ the Landau expansion up to fourth order in the 𝐸𝑔 representation reads

𝐹𝐸𝑔 = 𝛼(|ℎ3𝑧2−𝑟2 |
2 + |ℎ𝑥2−𝑦2 |2) + 𝛽1(|ℎ3𝑧2−𝑟2 |2 + |ℎ𝑥2−𝑦2 |2)2 + 𝛽2(ℎ∗3𝑧2−𝑟2ℎ𝑥2−𝑦2 − ℎ3𝑧2−𝑟2ℎ

∗
𝑥2−𝑦2 )

2

= 𝛼|𝒉|2 + 𝛽1|𝒉|4 + 𝛽2|𝒉 × 𝒉∗|2 (3.55)

where we have introduced 𝒉 = (ℎ3𝑧2−𝑟2 , ℎ𝑥2−𝑦2 )𝑇 as a vector notation of the order parameter. For the three-
component 𝑇2𝑔 representation the expansion reads

𝐹𝑇2𝑔 = 𝛼(|𝑙𝑦𝑧|
2 + |𝑙𝑥𝑧|2) + 𝛽1(|𝑙𝑦𝑧|2 + |𝑙𝑥𝑧|2 + |𝑙𝑥𝑦|2)2 + 𝛽2|𝑙2𝑦𝑧 + 𝑙2𝑥𝑧 + 𝑙2𝑥𝑦|2

+𝛽3(|𝑙𝑦𝑧|2|𝑙𝑥𝑧|2 + |𝑙𝑥𝑧|2|𝑙𝑥𝑦|2 + |𝑙𝑥𝑦|2|𝑙𝑦𝑧|2)

= 𝛼|𝒍|2 + 𝛽1|𝒍|4 + 𝛽2|𝒍 ⋅ 𝒍|2 + 𝛽3 ∑
𝑛>𝑚
|𝑙𝑛|2|𝑙𝑚|2 (3.56)

with the ordering vector 𝒍 = (𝑙𝑦𝑧, 𝑙𝑥𝑧, 𝑙𝑥𝑦)𝑇.
Below the critical temperature the coefficient 𝛼 of the second-order term assumes a negative value whereas

the fourth-order term is always positive definite. This implies that the fourth-order term selects the minimum
of the free energy, which puts some constraints on the values of 𝛽. From tables like [42] we find

Pairing Constraint TRS

𝐸𝑔 ∶ 𝒉 = (1, 0) 𝛽2 < 0 unbroken
𝐸𝑔 ∶ 𝒉 = (1, 𝑖) 𝛽2 > 0 broken
𝑇2𝑔 ∶ 𝒍 = (1, 0, 0) 4𝛽2 < 𝛽3, 𝛽3 > 0 unbroken
𝑇2𝑔 ∶ 𝒍 = (1, 1, 1) 𝛽2, 𝛽3 < 0 unbroken
𝑇2𝑔 ∶ 𝒍 = (1, 𝑖, 0) 0 < 𝛽3 < 4𝛽2 broken
𝑇2𝑔 ∶ 𝒍 = (1, 𝜔, 𝜔2) 𝛽3 < 0 < 𝛽2 broken

(3.57)

and any symmetry-related vectors with 𝜔 = 𝑒𝑖𝜋/3. By construction, this expansion only holds true right
below the critical temperature. As we will see later, at lower temperatures, intermediate states between the
time-reversal symmetric and the maximally time-reversal symmetry breaking states will emerge.

3.3.2 Validity of the low-energy theory and pseudomagnetic field

Thanks to the double degeneracy of the bands (3.39), the states can be labelled by a pseudospin index 𝑠 which
transforms like a spin-1/2 under inversion and time-reversal symmetry. For the Hamiltonian (3.37) such a
pseudospin basis can be found [133] with the basis states

𝜓𝒌,+,↑ =
1
√2
(

−𝑖𝑒−𝑖𝜙 sin 𝜃 cos 𝜁−𝜉2
−𝑖 cos 𝜁+𝜉2 + cos 𝜃 sin

𝜁−𝜉
2

−𝑖𝑒−𝑖𝜙 sin 𝜃 sin 𝜁−𝜉2
−𝑖 sin 𝜁+𝜉2 + cos 𝜃 cos

𝜁−𝜉
2

), 𝜓𝒌,+,↓ =
1
√2
(

𝑖 sin 𝜁+𝜉2 + cos 𝜃 cos
𝜁−𝜉
2

−𝑖𝑒𝑖𝜙 sin 𝜃 sin 𝜁−𝜉2
𝑖 cos 𝜁+𝜉2 + cos 𝜃 sin

𝜁−𝜉
2

−𝑖𝑒𝑖𝜙 sin 𝜃 cos 𝜁−𝜉2

), (3.58a)

𝜓𝒌,−,↑ =
1
√2
(

−𝑖𝑒−𝑖𝜙 sin 𝜃 cos 𝜁+𝜉2
𝑖 cos 𝜁−𝜉2 − cos 𝜃 sin

𝜁+𝜉
2

𝑖𝑒−𝑖𝜙 sin 𝜃 sin 𝜁+𝜉2
−𝑖 sin 𝜁−𝜉2 + cos 𝜃 cos

𝜁+𝜉
2

), 𝜓𝒌,−,↓ =
1
√2
(

𝑖 sin 𝜁−𝜉2 + cos 𝜃 cos
𝜁+𝜉
2

𝑖𝑒𝑖𝜙 sin 𝜃 sin 𝜁+𝜉2
−𝑖 cos 𝜁−𝜉2 − cos 𝜃 sin

𝜁+𝜉
2

−𝑖𝑒𝑖𝜙 sin 𝜃 cos 𝜁+𝜉2

). (3.58b)
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The angles are defined as

𝜙 = arctan(
𝜖𝒌,𝑦𝑧
𝜖𝒌,𝑥𝑧
), 𝜃 = arctan(

√𝜖2𝒌,𝑦𝑧 + 𝜖2𝒌,𝑥𝑧
𝜖𝒌,𝑥𝑦

) , (3.59a)

𝜉 = arctan(
𝜖𝒌,3𝑧2−𝑟2
𝜖𝒌,𝑥2−𝑦2
), 𝜁 = arctan(

√𝜖2𝒌,𝑥2−𝑦2 + 𝜖
2
𝒌,3𝑧2−𝑟2

√𝜖2𝒌,𝑦𝑧 + 𝜖2𝒌,𝑥𝑧 + 𝜖2𝒌,𝑥𝑦
) . (3.59b)

It is immediately evident that this basis is not well-defined when the numerator and the denominator of the
expressions in the angles vanish simultaneously, which happens along the [100] and [111] lines in the Brillouin
zone. This, however, does not pose a problem because the choice of the pseudospin basis is not unique and
we can therefore in principle choose a different, well-defined basis along these lines. In practice this is not
necessary.

The intraband pairing potential is independent of the choice of the pseudospin basis, but expressed in terms
of the pseudospin basis chosen above we find

𝜓𝒌,± = 𝜂𝒌,0 ± ⃗𝜂 ⋅ ̂𝜖𝒌 = 𝜂0 ±[(𝜂3𝑧2−𝑟2 sin 𝜉+𝜂𝑥2−𝑦2 cos 𝜉) sin 𝜁+ (𝜂𝑥𝑦 cos 𝜃+𝜂𝑥𝑧 sin 𝜃 cos𝜙+𝜂𝑦𝑧 sin 𝜃 sin𝜙) cos 𝜁].
(3.60)

The interband pairing potentials on the other hand are always basis-dependent. In the basis we have chosen
before, the singlet part takes on a very compact form

𝜓𝒌,𝐼 = 𝜂3𝑧2−𝑟2 cos 𝜉 − 𝜂𝑥2−𝑦2 sin 𝜉 = [ ⃗𝜂𝒌,𝐸𝑔 × ̂𝜖𝒌,𝐸𝑔 ]𝑧, (3.61)

whereas the triplet part has the form

𝒅𝒌 = cos 𝜁(𝜂3𝑧2−𝑟2 sin 𝜉 + 𝜂𝑥2−𝑦2 cos 𝜉)(
sin 𝜃 sin𝜙
sin 𝜃 cos𝜙

cos 𝜃
)

− sin 𝜁[(
𝜂𝑦𝑧
𝜂𝑥𝑧
𝜂𝑥𝑦

) ⋅(
sin 𝜃 sin𝜙
sin 𝜃 cos𝜙

cos 𝜃
)](

sin 𝜃 sin𝜙
sin 𝜃 cos𝜙

cos 𝜃
) +(
𝜂𝑦𝑧
𝜂𝑥𝑧
𝜂𝑥𝑦

)×(
sin 𝜃 sin𝜙
sin 𝜃 cos𝜙

cos 𝜃
) (3.62)

=
| ⃗𝜖𝒌,𝑇2𝑔 |

| ⃗𝜖|
( ⃗𝜂𝒌,𝐸𝑔 ⋅ ̂𝜖𝒌,𝐸𝑔 ) ̂𝜖𝒌,𝑇2𝑔 −

| ⃗𝜖𝒌,𝐸𝑔 |

| ⃗𝜖|
( ⃗𝜂𝒌,𝑇2𝑔 ⋅ ̂𝜖𝒌,𝑇2𝑔 ) ̂𝜖𝒌,𝑇2𝑔 + ⃗𝜂𝒌,𝑇2𝑔 × ̂𝜖𝒌,𝑇2𝑔 , (3.63)

where we have used the shorthand notation

⃗𝑣 = (𝑣3𝑧2−𝑟2 , 𝑣𝑥2−𝑦2 , 𝑣𝑥𝑦, 𝑣𝑥𝑧, 𝑣𝑦𝑧)𝑇, (3.64)

⃗𝑣𝐸𝑔 = (𝑣3𝑧2−𝑟2 , 𝑣𝑥2−𝑦2 )
𝑇, (3.65)

⃗𝑣𝑇2𝑔 = (𝑣𝑥𝑦, 𝑣𝑥𝑧, 𝑣𝑦𝑧)
𝑇, (3.66)

̂𝒗 = 𝒗/| ⃗𝑣|, (3.67)

with 𝑣 being either 𝜖𝒌 or 𝜂𝒌.

Low-energy structure of the time-reversal symmetry breaking states

In this section we will briefly review the expressions of the low-energy theory for the different time-reversal
symmetry-breaking pairing states from (3.57). Wewill also show plots of the Bogoliubov Fermi surfaces for these
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pairing states and the associated pseudomagnetic fields. In general a magnetic field gives rise to a magnetisation,
which can also be computed for the pseudomagnetic field [133]

𝑚𝒌,𝜇 = −
1
|𝒗𝒌,−|
𝛿𝒉𝒌,− ⋅ Tr[P𝒌,−𝒔P𝒌,−𝐽𝜇]. (3.68)

Figures 3.1, 3.2, and 3.4 below use band parameters for an inverted band structure, i.e. there is only a single
Fermi surface. For illustration purposes these figures also use an unphysically large gap amplitude to clearly
distinguish the Bogoliubov Fermi surfaces from line and point nodes.

▶ 𝐸𝑔 representation: 𝒉 = (1, 𝑖)

One possibility to arrange the gap functions of the 𝐸𝑔 representation in a time-reversal symmetry-breaking
combination is

Δ = Δ0
2
(Γ3𝑧2−𝑟2 + 𝑖Γ𝑥2−𝑦2 ). (3.69)

Projecting this pairing state onto the + band using the pseudospin transformation (3.58) we find in the different
representations

𝜓𝒌,+ =
Δ0
2

sin 𝜁(sin 𝜉 + 𝑖 cos 𝜉) (3.70)

= Δ0
𝜖𝒌,+ − 𝜖𝒌,−

(𝜖𝒌,3𝑧2−𝑟2 + 𝑖𝜖𝒌,𝑥2−𝑦2 ) (3.71)

= 𝛽Δ0
2

𝑘2𝑧 + 𝑒𝑖2𝜋/3𝑘2𝑥 + 𝑒𝑖4𝜋/3𝑘2𝑦
√𝛽2 ∑𝑖 𝑘

4
𝑖 + (3𝛾2 − 𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1
. (3.72)

This will have nodes along all the diagonals of the Brillouin zone and will therefore give rise to eight point
nodes.

We proceed to evaluate the shift in the chemical potential, that is always introduced by interband pairing,
independent of time-reversal symmetry breaking. In terms of the pseudospin basis it is given by (3.33) and in
the different representations we find

𝛿𝜖𝒌,+ =
1
8
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
[3 + 2 cos(2𝜁)] (3.73)

= |Δ0|2

2(𝜖𝒌,+ − 𝜖𝒌,−)3
[(𝜖𝒌,+ − 𝜖𝒌,−)2 − 2𝜖2𝒌,3𝑧2−𝑟2 − 2𝜖

2
𝒌,𝑥2−𝑦2 ] (3.74)

= |Δ0|
2

16
𝛽2 ∑𝑖 𝑘

4
𝑖 + (6𝛾2 − 𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1

(𝛽2 ∑𝑖 𝑘
4
𝑖 + (3𝛾2 − 𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1)

3/2 . (3.75)

The direction of the pseudomagnetic field (3.34) is basis-dependent and for convenience we therefore only give
its representation in terms of the angles (3.59)

𝛿ℎ𝑥,𝒌,+ =
1
2
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
cos 𝜁 sin 𝜃 sin𝜙 (3.76)

𝛿ℎ𝑦,𝒌,+ =
1
2
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
cos 𝜁 sin 𝜃 cos𝜙 (3.77)

𝛿ℎ𝑧,𝒌,+ =
1
2
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
cos 𝜁 cos 𝜃. (3.78)
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(a) (b) (c)

Figure 3.1. Low-energy structure of the time-reversal symmetry-breaking 𝐸𝑔 pairing state. (a) Bogoliubov Fermi surfaces
are shown in yellow on top of the normal-state Fermi surface in transparent grey. (b) Pseudomagnetic field in the pseudospin
basis (3.58). (c) Physical magnetisation of the states at the Fermi surface due to the pseudomagnetic field. Reprinted figure
with permission from P. M. R. Brydon et al., Phys. Rev. B 98, 224509 (2018). Copyright © 2018 by the American Physical
Society.

Its magnitude on the other hand is basis-independent and ultimately responsible for the formation of the
Bogoliubov Fermi surfaces. Therefore we give it again in all three representations

|𝛿𝒉𝒌,+| =
1
2
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
cos 𝜁 (3.79)

= |Δ0|2

(𝜖𝒌,+ − 𝜖𝒌,−)2
√𝜖2𝒌,𝑦𝑧 + 𝜖2𝒌,𝑥𝑧 + 𝜖2𝒌,𝑥𝑦 (3.80)

=
√3𝛾|Δ0|2

4

√𝑘2𝑦𝑘2𝑧 + 𝑘2𝑥𝑘2𝑧 + 𝑘2𝑥𝑘2𝑦
𝛽2 ∑𝑖 𝑘

4
𝑖 + (3𝛾2 − 𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1
. (3.81)

In Fig. 3.1 we show the Bogoliubov Fermi surfaces, the pseudomagnetic field in the basis defined in (3.58),
and the associated physical magnetisation. In panel (a) we see that the eight point nodes are inflated into
pockets. The pseudomagnetic field in panel (b) exhibits an octupolar structure. The octupolar structure implies
that the magnetisation shown in panel (c) vanishes on average.

▶ 𝑇2𝑔 representation: 𝒍 = (1, 𝑖, 0)

The gap functions in the 𝑇2𝑔 representation can be arranged in two distinct ways to yield a time-reversal
symmetry-breaking pairing state. Here we will begin with the chiral state with ordering vector 𝒍 = (1, 𝑖, 0),
which will be investigated in more detail later. One possible way to write this is

Δ = Δ0
2
(Γ𝑥𝑦 + 𝑖Γ𝑦𝑧). (3.82)

Projected into the + band we find the intraband gap

𝜓𝒌,+ =
Δ0
2

cos 𝜁 sin 𝜃(cos𝜙 + 𝑖 sin𝜙) (3.83)

= Δ0
𝜖𝒌,𝑥𝑧 + 𝑖𝜖𝒌,𝑦𝑧
𝜖𝒌,+ − 𝜖𝒌,−

(3.84)

=
√3𝛾Δ0
2

(𝑘𝑥 + 𝑖𝑘𝑦)𝑘𝑧
√𝛽2 ∑𝑖 𝑘

4
𝑖 + (3𝛾2 − 𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1
, (3.85)
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which is reminiscent of a chiral 𝑑-wave state with an equatorial line node at 𝑘𝑧 = 0 and point nodes at the poles
𝑘𝑥 = 𝑘𝑦 = 0.

The shift of the chemical potential in all three representations is given by

𝛿𝜖𝒌,+ = −
1
16
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
[−7 + cos(2𝜁) − 2 cos2 𝜁 cos(2𝜃)] (3.86)

= |Δ0|2

2(𝜖𝒌,+ − 𝜖𝒌,−)3
[(𝜖𝒌,+ − 𝜖𝒌,−)2 − 2𝜖2𝒌,𝑥𝑧 − 2𝜖2𝒌,𝑦𝑧] (3.87)

= |Δ0|
2

16
2𝛽2 ∑𝑖 𝑘

4
𝑖 + (3𝛾2 − 2𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1 + 6𝛾2𝑘2𝑥𝑘2𝑦

(𝛽2 ∑𝑖 𝑘
4
𝑖 + (3𝛾2 − 𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1)

3/2 , (3.88)

and the pseudomagnetic field in only the representation of the angles (3.59)

𝛿ℎ𝑥,𝒌,+ = −
1
2
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
sin 𝜃(sin 𝜁 cos𝜙 + cos 𝜃 sin𝜙) (3.89)

𝛿ℎ𝑦,𝒌,+ = −
1
2
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
sin 𝜃(cos 𝜃 cos𝜙 − sin 𝜁 sin𝜙) (3.90)

𝛿ℎ𝑧,𝒌,+ = −
1
2
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
cos2 𝜃. (3.91)

The magnitude of the pseudomagnetic field can be expressed in the following way

|𝛿𝒉𝒌,+| =
1
4
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
√3 − 2 cos(2𝜁) sin2 𝜃 + cos(2𝜃) (3.92)

= |Δ0|2

(𝜖𝒌,+ − 𝜖𝒌,−)2
√𝜖2𝒌,3𝑧2−𝑟2 + 𝜖

2
𝒌,𝑥2−𝑦2 + 𝜖

2
𝒌,𝑥𝑦 (3.93)

=
√3𝛾|Δ0|2

4

√𝛽2 ∑𝑖 𝑘
4
𝑖 − 𝛽2 ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1 + 3𝛾2𝑘2𝑥𝑘2𝑦

𝛽2 ∑𝑖 𝑘
4
𝑖 + (3𝛾2 − 𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1
. (3.94)

In Fig. 3.2 we show the Bogoliubov Fermi surfaces, the pseudomagnetic field in the basis defined in (3.58),
and its associated physical magnetisation. In panel (a) we see that the point nodes at the poles are inflated into
pockets, whereas the equatorial line node obtained a ribbon-like shape. This state breaks crystal symmetry. The
pseudomagnetic field in panel (b) involves both dipolar and octupolar contribution. The dipolar contribution
gives rise to an overall magnetisation in 𝑧 direction, shown in panel (c). Whether this magnetisation will have
a measurable impact on the superconductor will be discussed in further detail in Section 4.6.

Before moving on to the cyclic 𝑇2𝑔 pairing state, we will take a brief look at the validity of the low-energy
theory which we can easily assess now that we have expressions for the chemical potential shift and pseudomag-
netic field. In Fig. 3.3 we show the band structure of the BdG-Hamiltonian and the effective low-energy theory
for three sets of band parameters in the presence of the chiral 𝑇2𝑔 pairing state with a small gap amplitude.

In panel (a), where the band splitting is weak and the band structure has two Fermi surfaces, the low-energy
theory fails miserably. This is not surprising because the magnitude of the pseudomagnetic field scales inversely
with the band splitting squared, i.e. when the band splitting is small, the corrections are no longer small and
the assumption of the perturbation theory breaks down. This also gives rise to enormous Bogoliubov Fermi
surfaces. For moderate band splitting in panel (b) the perturbation theory is still not applicable over wide
ranges of momentum space, but in a narrow window around the Fermi energy the reproduction of the exact
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(a) (b) (c)

Figure 3.2. Low-energy structure of the time-reversal symmetry-breaking 𝑇2𝑔 pairing state with ordering vector 𝒍 = (1, 𝑖, 0).
(a) Bogoliubov Fermi surfaces are shown in yellow on top of the normal-state Fermi surface in transparent grey. (b)
Pseudomagnetic field in the pseudospin basis (3.58). (c) Physical magnetisation of the states at the Fermi surface due to the
pseudomagnetic field. Reprinted figure with permission from P. M. R. Brydon et al., Phys. Rev. B 98, 224509 (2018). Copyright
© 2018 by the American Physical Society.

band structure is sufficient to qualitatively reproduce quantities like the density of states (see later in Fig. 4.11).
When the band splitting is very large and the band structure is inverted such that there is only a single Fermi
surface, the low-energy theory fits the exact band structure over a wide range of momentum space. In this
regime Bogoliubov Fermi surfaces are correctly described using the low-energy effective theory.

▶ 𝑇2𝑔 representation: 𝒍 = (1, 𝜔, 𝜔2)

Finally we consider the cyclic 𝑇2𝑔 pairing state with ordering vector 𝒍 = (1, 𝜔, 𝜔2). One possible combination
of gap functions to realise this time-reversal symmetry-breaking state is

Δ = Δ0
2
(Γ𝑥𝑧 + 𝑒𝑖2𝜋/3Γ𝑦𝑧 + 𝑒𝑖4𝜋/3Γ𝑥𝑦). (3.95)

Projected into the + band the intraband gap can be represented by

𝜓𝒌,+ =
Δ0
2

cos 𝜁(sin 𝜃 cos𝜙 + 𝑒𝑖2𝜋/3 sin 𝜃 sin𝜙 + 𝑒𝑖4𝜋/3 cos 𝜃) (3.96)

= Δ0
𝜖𝒌,+ − 𝜖𝒌,−

(𝜖𝒌,𝑥𝑧 + 𝑒𝑖2𝜋/3𝜖𝒌,𝑦𝑧 + 𝑒𝑖4𝜋/3𝜖𝒌,𝑥𝑦) (3.97)

=
√3𝛾Δ0
2
𝑘𝑥𝑘𝑧 + 𝑒𝑖2𝜋/3𝑘𝑦𝑘𝑧 + 𝑒𝑖4𝜋/3𝑘𝑥𝑘𝑦
√𝛽2 ∑𝑖 𝑘

4
𝑖 + (3𝛾2 − 𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1
. (3.98)

For this choice of distributing the relative phases the gap has point nodes along the principal axes and along
the [111] direction.

The expressions for the chemical potential shift are a lot more complicated than for the other pairing states
we discussed. In the three different representations

𝛿𝜖𝒌,+ =
1
8
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
[5 − cos(2𝜁) + cos2 𝜁(sin2 𝜃 sin(2𝜙) + sin(2𝜃)(sin𝜙 + cos𝜙))] (3.99)

= |Δ0|2

2(𝜖𝒌,+ − 𝜖𝒌,−)3
[3𝜖2𝒌,3𝑧2−𝑟2 + 3𝜖

2
𝒌,𝑥2−𝑦2 + 2𝜖

2
𝒌,𝑥𝑦 + 2𝜖2𝒌,𝑥𝑧 + 2𝜖2𝒌,𝑦𝑧 + 𝜖𝒌,𝑦𝑧𝜖𝒌,𝑥𝑧 + 𝜖𝒌,𝑦𝑧𝜖𝒌,𝑥𝑦 + 𝜖𝒌,𝑥𝑧𝜖𝒌,𝑥𝑦]

(3.100)

= |Δ0|
2

16
3𝛽2 ∑𝑖 𝑘

4
𝑖 + (6𝛾2 − 3𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1 + 3𝛾2(𝑘2𝑥𝑘𝑦𝑘𝑧 + 𝑘𝑥𝑘2𝑦𝑘𝑧 + 𝑘𝑥𝑘𝑦𝑘2𝑧)

(𝛽2 ∑𝑖 𝑘
4
𝑖 + (3𝛾2 − 𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1)

3/2 . (3.101)
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Figure 3.3.Validity of the low-energy theory. All panels show the band structure along the [100] direction where we would
expect the equatorial line node. Solid lines denote the exact eigenvalues of the BdG-Hamiltonian, dashed the effective low-
energy theory. The gap is small with an amplitude Δ0 = 𝜇/300. Vertical dashed lines mark the location of the normal-state
Fermi surface. Arrows point to the location of the Bogoliubov Fermi surfaces. The panels in the upper row show the band
structure in the radial direction from 𝑘 = 0 to 𝑘 ≈ 2𝑘𝐹. The panels in the lower row are zoomed in on the boxes in the upper
row. Column (a) For weak spin-orbit coupling the resemblance is poor. Column (b) For moderate spin-orbit coupling
Bogoliubov Fermi surfaces are stable and the effective theory is valid in a narrow window around the Fermi energy. Column
(c) For the case of the inverted band structure the perturbative approach works best. The Bogoliubov Fermi surfaces are
very small.

Likewise, the expressions for the pseudomagnetic field are also much more complicated. We have in terms of
angles (3.59)

𝛿ℎ𝑥,𝒌,+ =
√3
4
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
[cos 𝜃(sin 𝜁 − sin 𝜃 sin𝜙) − sin 𝜃(cos𝜙(sin 𝜁 + sin 𝜃 sin𝜙) + sin 𝜃 sin2 𝜙)] (3.102)

𝛿ℎ𝑦,𝒌,+ = −
√3
4
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
[sin 𝜁(cos 𝜃 − sin 𝜃 sin𝜙) + sin 𝜃 cos𝜙(sin 𝜃(sin𝜙 + cos𝜙) + cos 𝜃)] (3.103)

𝛿ℎ𝑧,𝒌,+ = −
√3
8
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
cos2 𝜃[2 sin 𝜁 sin 𝜃(sin𝜙 − cos𝜙) + sin(2𝜃)(sin𝜙 + cos𝜙) + cos(2𝜃) + 1]. (3.104)

The magnitude of the pseudomagnetic field is given by

|𝛿𝒉𝒌,+| =
1
4
|Δ0|2

𝜖𝒌,+ − 𝜖𝒌,−
√6 + 3 cos2 𝜁(sin2 𝜃 sin(2𝜙) + sin(2𝜃)(sin𝜙 + cos𝜙)) − 3 cos(2𝜁) (3.105)

= |Δ0|2

(𝜖𝒌,+ − 𝜖𝒌,−)2
√3
2
√3𝜖2𝒌,3𝑧2−𝑟2 + 3𝜖

2
𝒌,𝑥2−𝑦2 + (𝜖𝒌,𝑦𝑧 + 𝜖𝒌,𝑥𝑧 + 𝜖𝒌,𝑥𝑦)

2 (3.106)

= 3𝛾|Δ0|
2

4

√𝛽2 ∑𝑖 𝑘
4
𝑖 + (𝛾2 − 𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1

𝛽2 ∑𝑖 𝑘
4
𝑖 + (3𝛾2 − 𝛽2) ∑𝑖 𝑘

2
𝑖 𝑘2𝑖+1
. (3.107)
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(a) (b) (c)

Figure 3.4. Low-energy structure of the time-reversal symmetry-breaking 𝑇2𝑔 pairing state with ordering vector 𝒍 =
(1, 𝜔, 𝜔2). (a) Bogoliubov Fermi surfaces are shown in yellow on top of the normal-state Fermi surface in transparent grey.
(b) Pseudomagnetic field in the pseudospin basis (3.58). (c) Physical magnetisation of the states at the Fermi surface due
to the pseudomagnetic field. Reprinted figure with permission from P. M. R. Brydon et al., Phys. Rev. B 98, 224509 (2018).
Copyright © 2018 by the American Physical Society.

The pseudomagnetic field has the largest magnitude of the pairing states considered so far, which has interesting
consequences on the formation of the Bogoliubov Fermi surfaces.

In Fig. 3.4 we show the Bogoliubov Fermi surfaces, the pseudomagnetic field in the basis defined in (3.58),
and its associated physical magnetisation. We would expect that the eight point nodes of (3.95) inflate into
eight distinct pockets like in the case of the 𝐸𝑔 pairing state. However, looking at panel (a) this is not the case
and instead we have two gigantic Bogoliubov Fermi surfaces which connect four point nodes each. This is an
effect of the large pseudomagnetic field mentioned earlier. The euclidean distance between the point nodes
in momentum space is shorter than in the 𝐸𝑔 case and therefore the gap between them is much shallower.
This pairing state breaks crystal symmetry. Like for the chiral state, the pseudomagnetic field in panel (b)
encompasses both dipolar and octupolar contributions, however, this time the overall magnetisation in panel
(c) points along the three-fold axis.

3.4 Summary

In this chapter we have introduced the concept of Bogoliubov Fermi surfaces. These extended nodal surfaces
appear generically in any multiband even-parity superconductor that breaks time-reversal symmetry. We have
studied the origin, the stability, and the effects of Bogoliubov Fermi surfaces in a paradigmatic model with two
bands. Care has been taken to draw conclusion as general as possible to not depend on this specific model. The
generalisation to more than two bands is straight-forward.

The presence of multiple orbitals facilitates the existence of orbitally non-trivial 𝑠-wave pairing states, which
we called anomalous 𝑠-wave states or internally anisotropic pairing states. If these pairing states break time-
reversal symmetry it implies that they give rise to a non-unitary gap product. Treating the interband pairing
perturbatively we derived an effective low-energy theory which explains the origin of the Bogoliubov Fermi
surfaces in terms of a pseudomagnetic field, which inflates point and line nodes into extended surfaces. The
time-reversal odd part of the non-unitary gap product is directly related to this pseudomagnetic field. The
Bogoliubov Fermi surfaces are topologically protected by a ℤ2 Pfaffian invariant.

The general properties of the Bogoliubov Fermi surfaces have been illustrated on the example of the Luttinger-
KohnHamiltonian of 𝑗 = 3/2 fermions, which has served as a paradigmatic model of Bogoliubov Fermi surfaces
in the literature [66, 76, 77, 133, 135, 136].
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Chapter 4

Bogoliubov Fermi surfaces stabilised by

spin-orbit coupling

The material presented in this chapter has been published previously in

[140] H. Menke, C. Timm, and P. M. R. Brydon, “Bogoliubov Fermi surfaces stabilized by spin-orbit coupling”,
Phys. Rev. B 100, 224505 (2019).

In the previous chapter we have introduced the concept of Bogoliubov Fermi surfaces, their general theory
and topological protection. In this chapter we are going to investigate the thermodynamic stability of these
Bogoliubov Fermi surface on the example of the paradigmatic model introduced in Section 3.3. We numerically
extract the mean-field phase diagram as a function of spin-orbit coupling and temperature and compare
the results with Ginzburg-Landau theory. We find a stable pairing state with Bogoliubov Fermi surfaces for
moderate values of the spin-orbit coupling. Multiband effects and cubic anisotropy give rise to a rich phase
diagram. Finally we will discuss some experimental signatures of the state with Bogoliubov Fermi surfaces.

4.1 Known limits

Previous work on two-band superconductors has dealt with the influence of spin-orbit coupling on the selection
of the superconducting instability [64, 66, 70, 133, 137]. In the following we will briefly review these results.

Vanishing spin-orbit coupling

Ho and Yip [137] have studied pairing in 𝑗 = 3/2 free fermionic fluids in the context of cold atomic gases. This
corresponds to the limit of vanishing spin-orbit coupling in the Luttinger-Kohn model, which implies that the
bands are four-fold degenerate [137, 138]. Evaluating the Ginzburg-Landau free energy (D.9) for this system
yields the same form as that of a general 𝑑-wave singlet superfluid. The possible ground states of this have
been determined previously by Mermin [139]. For fermions with spin 𝑗 = 3/2 in the 𝐽 = 2 quintet channel
the stable solution is a real state, i.e. any state where the pairing potential is real up to a constant global phase
factor. Hence time-reversal symmetry remains unbroken. Due to the four-fold degeneracy of the bands and the
absence of band splitting, the normal-state Hamiltonian and the pairing can be simultaneously diagonalised
by a momentum-independent spin rotation, which can be determined straight-forwardly by diagonalising the
matrix pairing potential, because the normal-state Hamiltonian is already diagonal in the absence of band
splitting. Hence the problem essentially separates into two single-band 𝑠-wave singlet superconductors with a
uniform gap across the whole Fermi surface.
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For a time-reversal symmetry-breaking pairing state the situation is different, because two of the four degen-
erate Fermi surfaces remain ungapped, as can be seen easily from the matrix representation of an exemplary
pairing state:

Γ𝑥𝑧 + 𝑖Γ𝑦𝑧 =(

0 0 √2 0
0 0 0 0
−√2 0 0 0
0 0 0 0

) ≡ 𝑐3/2𝑐−1/2 − 𝑐−1/2𝑐3/2. (4.1)

In this case only 𝑗 = 3/2 and 𝑗 = −1/2 bands will be gapped. Since a time-reversal symmetric pairing state
will always open a gap on all Fermi surfaces it is energetically more favourable. Spin-orbit coupling lifts the
four-fold degeneracy and leads to the appearance of nodes on the Fermi surface. However, for sufficiently weak
spin-orbit coupling we expect the fully-gapped time-reversal-symmetric state found by Ho and Yip [137] to
be realised, because the energy difference between a time-reversal symmetric and a time-reversal symmetry
breaking pairing state is generically finite.

Strong spin-orbit coupling

When the spin-orbit coupling becomes much larger than the pairing potential the interband pairing can be
treated as a perturbation to the single-band physics, as we have seen before in Section 3.2. In this limit the
intraband gap for the Luttinger-Kohn Hamiltonian for a general pairing state in the 𝑇2𝑔 irrep is given as

𝜓𝒌,± = ±
√3𝛾
2
Δ𝑦𝑧𝑘𝑦𝑘𝑧 + Δ𝑥𝑧𝑘𝑥𝑘𝑧 + Δ𝑥𝑦𝑘𝑥𝑘𝑦
√∑𝑖[𝛽2𝑘

4
𝑖 + (3𝛾2 − 𝛽2)𝑘2𝑖 𝑘2𝑖+1]

. (4.2)

The interplay of the normal-state spin-orbital texture at the Fermi surface with the 𝐽 = 2 quintet pairing gives rise
to a 𝑑-wave-like form factor. In this case it is preferred that time-reversal symmetry is brokenmaximally because
that will remove intersecting line nodes to enhance the overall gap magnitude and lower the free energy [42].
This can be understood within the Landau expansion which gives the difference between normal-state and
superconducting state free energy in powers of the pairing potential 𝐹 = 𝛼|Δ|2 +O(|Δ|4). Superconductivity
is driven by the quadratic term, which is called the condensation energy. The condensation energy depends
on the square of the pairing potential averaged over the Fermi surface, so nodes are generally detrimental to
superconductivity. It might still be favourable to form nodes in some situations depending on the microscopic
pairing mechanism. When two or more equivalent gap functions are degenerate, like here in the 𝑇2𝑔 manifold
of the 𝑑-wave functions, they can form a linear combination, such as 𝑑𝑥𝑧 ± 𝑖𝑑𝑦𝑧, whose absolute value squared
is greater than that of the individual parts. For a spherical Fermi surface this state will replace the vertical line
nodes of each individual wave function with only point nodes [90].

4.2 Ginzburg-Landau theory

It is possible to evaluate the Ginzburg-Landau free energy in a very generic fashion up to the point where the
integrals over momentum space have to be evaluated. Thanks to inversion and time-reversal symmetry we can
conveniently parameterise the Greens function of (3.1) in terms of two poles

𝐺(𝒌, 𝜔) = 1
2
[ 1
𝑖𝜔 − 𝐸𝒌,+

(𝟙4 +
⃗𝜖𝒌 ⋅ ⃗𝛾
| ⃗𝜖𝒌|
) + 1
𝑖𝜔 − 𝐸𝒌,−

(𝟙4 −
⃗𝜖𝒌 ⋅ ⃗𝛾
| ⃗𝜖𝒌|
)]. (4.3)
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The hole-like Green’s function is related to the electron-like one by

�̃�(𝒌, 𝜔) = −𝐺𝑇(𝒌, −𝑖𝜔𝑛) =
1
2
[ 1
𝑖𝜔 + 𝐸𝒌,+

(𝟙4 +
⃗𝜖𝒌 ⋅ ⃗𝛾𝑇

| ⃗𝜖𝒌|
) + 1
𝑖𝜔 + 𝐸𝒌,−

(𝟙4 −
⃗𝜖𝒌 ⋅ ⃗𝛾𝑇

| ⃗𝜖𝒌|
)]. (4.4)

Expanding the Ginzburg-Landau free energy up to fourth order for a multi-component order parameter
Δ⃗ = (Δ1,… , Δ𝑁) we can generically write it as

𝐹GL = ∑
𝑖𝑗
Δ∗𝑖 𝛼𝑖𝑗Δ𝑗 + ∑

𝑖𝑗𝑘𝑙
Δ∗𝑖 Δ∗𝑗 𝛽𝑖𝑗𝑘𝑙Δ𝑘Δ𝑙. (4.5)

The leading instability is determined by the stationary point of 𝐹GL to lowest order

𝜕𝐹GL
𝜕Δ∗𝑖
= ∑
𝑗
𝛼𝑖𝑗Δ𝑗 +O(|Δ⃗|3) = 0. (4.6)

This matrix equation always has the trivial solution Δ⃗ = 0. For non-trivial solutions to exist, the determinant
of the matrix 𝛼must vanish. This procedure, however, cannot distinguish between a time-reversal invariant
and a time-reversal symmetry-breaking state, so to find the true ground state the fourth-order coefficient has
to be taken into account. Group theory dictates that all superconducting states within the same irreducible
representation have the same critical temperature [42]. In the following, whenever we are talking about the
critical temperature 𝑇𝑐 we refer to its definition in terms of the second-order phase transition within the
Ginzburg-Landau framework where the second-order coefficient has a stationary point.

Therefore, in the simplest approach to study the time-reversal symmetry-breaking phase transition we
evaluate the fourth-order term of the Ginzburg-Landau free energy for both a time-reversal invariant and a
time-reversal symmetry-breaking pairing state and determine the crossover point as a function of spin-orbit
coupling. We can use the Green’s functions defined above which is more convenient for numerical evaluation,
or we can project the Hamiltonian into the pseudospin basis where the Green’s function is simply diagonal.
The details of the explicit expressions and their evaluation are unimportant and are therefore deferred to
Appendix D.

The Ginzburg-Landau approach has been used previously to asses the stability of Bogoliubov Fermi surfaces
in [66]. However, there the limit of inverted band structure with very strong spin-orbit coupling was assumed
where only a single band crosses the Fermi surface. It was found that in this limit a time-reversal symmetry-
breaking state with Bogoliubov Fermi surfaces is stable and a lower bound was set on the required strength
of the spin-orbit coupling. As we will see in the next section, this estimate is too conservative. Therefore
we reevaluate the Ginzburg-Landau treatment without approximating the band structure and compare and
contrast with numerical results from direct minimisation of the free energy, to assess the correctness of the
Ginzburg-Landau approach.

A Ginzburg-Landau treatment of the paradigmatic Luttinger-Kohn Hamiltonian has been performed in the
literature [73, 134]. In this scenario the system has full spherical symmetry and the band structure is inverted
with the chemical potential at the band touching point such that the density of states at the Fermi point is
zero. In this case a weak-coupling instability is insufficient to give rise to superconductivity. For this “strong
coupling” scenario it is found that the leading instability is a uniaxial nematic state.

4.3 Time-reversal symmetry-breaking in the spherical limit

From the previous discussion we expect a time-reversal symmetric state for vanishing spin-orbit coupling and
a time-reversal symmetry-breaking state in the limit of very strong spin-orbit coupling where the Bogoliubov
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Fermi surfaces will be infinitesimally small and indistinguishable from point and line nodes. It is clear that there
will be a time-reversal symmetry-breaking phase transition, however, the question is whether the resulting
Bogoliubov Fermi surfaces will be observable or not. If the Bogoliubov Fermi surfaces were too small to
distinguish them from point and line nodes, their experimental signatures would also be indistinguishable,
rendering their observation very difficult.

In this section we will investigate this time-reversal symmetry-breaking phase transition on the example of
the paradigmatic Luttinger-Kohn model. In the limit 𝛽 = 𝛾 the Hamiltonian (3.37) transforms under SO(3)
and can be reduced to

ℎ(𝒌) = (𝛼|𝒌|2 − 𝜇)𝟙 + 𝛽(𝒌 ⋅ 𝑱)2 (4.7)

with doubly degenerate eigenvalues

𝐸𝒌,± = (𝛼 +
5𝛽
4
± 𝛽)|𝒌|2 − 𝜇. (4.8)

We are interested in the point of time-reversal symmetry-breaking as a function of the band splitting. In
Fig. 4.1 we show representative band structures for the different cases we anticipate at fixed chemical potential
𝜇. In panel (a) in the absence of band splitting (𝛽 = 0) the bands are four-fold degenerate and there is only
a single Fermi surface. This is the case that has been discussed by Ho and Yip [137] and therefore we expect
a time-reversal symmetric pairing state to be realised. If we choose the sign of 𝛽 negative, one of the bands
starts splitting down. For moderate values of 𝛽, as shown in panel (b), there are two Fermi surfaces. The band
splitting at the Fermi surface is also moderate, so we cannot expect the effective single-band theory to hold.
For large magnitudes of 𝛽 one of the bands will bend completely downwards and not appear at the Fermi level
anymore. In this case the band splitting is very large and if the gap is small compared to the band splitting the
effective single-band theory is a good approximation. In fact, this is the case the effective single-band model
was originally formulated for [64]. From this we naïvely expect that for the situation in panel (a) time-reversal
symmetry is preserved whereas in panel (c) time-reversal symmetry will be broken.

Aside from verifying this hypothesis there are more questions to be answered. What is the minimal band
splitting sufficient to realise a time-reversal symmetry-broken state? How will the system evolve from a time-
reversal-symmetric into a time-reversal symmetry-breaking state? Does the “+” band in Fig. 4.1 have to curve
downwards before Bogoliubov Fermi surfaces can appear? What will the size of the Bogoliubov Fermi surfaces
be and will they be clearly distinguishable in size from point and line nodes?

4.3.1 Time-reversal symmetry breaking at the critical temperature

In the following we are going to focus on the 𝑇2𝑔 manifold of the pairing states. The results do not differ qualita-
tively for the 𝐸𝑔 manifold. As we have discussed earlier in the context of the Landau expansion of the free energy,
there are four distinct equilibrium states for the 𝑇2𝑔 manifold, which are 𝒍 = (1, 0, 0), (1, 1, 1), (1, 𝑖, 0), (1, 𝜔, 𝜔2).
The first two are time-reversal symmetric, whereas the latter two break time-reversal symmetry. In the spherical
limit the Ginzburg-Landau expansion up to fourth order cannot distinguish the true equilibrium among the
time-reversal symmetric (1, 0, 0) and (1, 1, 1) states, as well as the time-reversal symmetry breaking (1, 𝑖, 0) and
(1, 𝜔, 𝜔2) states, respectively [134]. So at the level of Ginzburg-Landau theory we will consider the time-reversal
symmetry-breaking phase transition from (1, 0, 0) to (1, 𝑖, 0), but the results readily apply to the (1, 1, 1) to
(1, 𝜔, 𝜔2) transition as well.

To check the validity of our Ginzburg-Landau theory, we will compare the fourth-order coefficient to
the one that we extract from the full mean-field Helmholtz free energy (C.46). To this end we pick a critical
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Figure 4.1. Representative spectra along the radial direction for the spherically symmetric model described by Eq. (4.7). (a)
In the absence of spin-orbit coupling, the bands are four-fold degenerate. The single Fermi surface has a radius 𝑘𝐹,0 = √𝜇/𝛼.
We chose 𝛼 > 0 so that the band has positive effective mass. (b) Moderate spin-orbit coupling lifts the four-fold degeneracy,
yet both doubly degenerate bands still have positive effective mass. There are now two Fermi surfaces with wave vectors
𝑘𝐹,± = √𝜇/(𝛼 + 5𝛽/4 ± 𝛽). (c) For 𝛽 < −4𝛼/9, the effective mass of one of the bands becomes negative, and there is only
a single Fermi surface. Reprinted figure with permission from H. Menke et al., Phys. Rev. B 100, 224505 (2019). Copyright
© 2019 by the American Physical Society.

temperature 𝑇𝑐 and choose the attractive interaction 𝑉𝑇2𝑔 = 𝑔0 in (3.54) such that the second-order coefficient
of the Ginzburg-Landau free energy is zero, i.e. at 𝑇𝑐 the lowest order non-zero term in the free energy is the
fourth-order term. This allows us to fit the Helmholtz free energy with a polynomial of the form 𝐹(Δ0) = 𝛿|Δ0|4

for small gap amplitudes Δ0. The coefficient 𝛿 is then equivalent to the fourth-order coefficient in the Ginzburg-
Landau free energy. The coefficient 𝛿 depends on the choice of the pairing state as well as the band parameters,
hence a crossing will mark the point of the time-reversal symmetry breaking phase transition. Of course, the
Helmholtz free energy also contains terms of order higher than four, so we expect some deviations between the
two.

In Fig. 4.2 we plot the fourth-order coefficient of the Helmholtz free energy and the Ginzburg-Landau free
energy just below the critical temperature for a time-reversal symmetric (1, 0, 0) or (1, 1, 1) and a time-reversal
symmetry-breaking (1, 𝑖, 0) or (1, 𝜔, 𝜔2) pairing state. At some point the time-reversal symmetry-breaking state
will assume a lower value than the time-reversal symmetric state, which marks the point of the time-reversal
symmetry-breaking phase transition. This point differs slightly for the Helmholtz and the Ginzburg-Landau
free energy, yet they are in very good agreement.

One peculiarity about the fourth-order coefficient in Fig. 4.2 is that there is a region where it assumes
a negative value. In this area the minimum of the free energy is no longer determined by the fourth-order
coefficient, but by higher order terms which also implies the presence of a first-order phase transition. We will
go into more detail about that later.

4.3.2 A temperature-dependent phase diagram

The Ginzburg-Landau theory can only give us information about what happens just below the critical tem-
perature. For lower temperatures we will have to find the self-consistent gap by direct minimisation of the
Helmholtz free energy. For this we will focus on a submanifold of the 𝑇2𝑔 states spanned by the (1, 0, 0) and
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Figure 4.2. Comparison of the fourth-order coefficient of the free energy as obtained analytically from Ginzburg-Landau
theory and numerically from the Helmholtz free energy. The inset is a zoom of the box marked in the full size plot where
the points have been connected by lines as a guide to the eye, where solid refers to the Helmholtz free energy and dashed to
the Ginzburg-Landau free energy. The solid and dashed vertical line denote the point of time-reversal symmetry breaking
as predicted by the Ginzburg-Landau and Helmholtz free energy, respectively.

(1, 𝑖, 0). Therefore we choose the mean-field ansatz:

Δ = Δ𝑥𝑧Γ𝑥𝑧 + 𝑖Δ𝑦𝑧Γ𝑦𝑧, (4.9)

with two real variational parametersΔ𝑥𝑧 andΔ𝑥𝑧. If one of the parameters is zero, the resulting state is equivalent
to the (1, 0, 0) state, which preserves time-reversal symmetry. For non-zero Δ𝑥𝑧 and Δ𝑦𝑧 the state breaks time-
reversal symmetry, which is maximally broken for Δ𝑥𝑧 = Δ𝑦𝑧, which in turn corresponds to a (1, 𝑖, 0) state. The
restriction to the 𝑥𝑧 and 𝑦𝑧 pairing states may seem artificial in the cubic system, but these are the only pairing
states that are also degenerate in other crystal systems, including hexagonal (𝐸1𝑔 in 𝐷6ℎ) and tetragonal (𝐸𝑔
in 𝐷4ℎ). For example, a chiral 𝑑-wave state with the same symmetry is believed to be realised in tetragonal
URu2Si2 [141]. In contrast to the 𝐸𝑔 representation which also features two degenerate pairings, the (1, 𝑖, 0)
features an equatorial line node, whereas the other 𝑇2𝑔 state (1, 𝜔, 𝜔2) and the 𝐸𝑔 states only have point nodes.
This results in a larger penalty to the free energy, such that in the worst case, we underestimate the stability of
the time-reversal symmetry-breaking state with Bogoliubov Fermi surfaces. It is therefore expected that our
conclusions qualitatively apply to any superconductor with two degenerate pairing potentials. The pairing state
in the spherically symmetric limit has also been considered in Refs. [74, 134, 142].

In Fig. 4.3, we present the phase diagram as a function of temperature and spin-orbit coupling. In Figs. 4.4(a)–
4.4(f) we show the band structure for the points labelled in Fig. 4.3 along the [100] direction where we expect
nodes from the projected gap. That implies that gaps along this direction are entirely due to interband pairing. To
obtain comparable results over a wide range of values for the spin-orbit coupling, we fix the critical temperature
𝑇𝑐 by varying the attractive interaction 𝑔0 such that the second-order coefficient of the Ginzburg-Landau free
energy vanishes at the chosen critical temperature, here 𝑘𝐵𝑇𝑐 = 𝜇/60. This eliminates effects due to changing
density of states at the Fermi energy as we tune through the spin-orbit coupling.

Starting at 𝛽 = 0 we find a fully gapped time-reversal symmetric state as was predicted earlier by Ho and
Yip [137], which we label “nodeless TRS”. As we turn on the spin-orbit coupling (𝛽 < 0), the projection of
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Figure 4.3. Phase diagram for the 𝑇2𝑔 pairing states given by Eq. (4.9) as a function of spin-orbit coupling and temperature.
The left panel is a zoom of the box in the right panel. The colour code indicates the gap magnitude √Δ2𝑥𝑧 + Δ2𝑦𝑧 where
brighter colours mean larger gaps and white means no superconductivity. The horizontal line at 𝑇/𝑇𝑐 = 1 denotes the
critical temperature 𝑇𝑐 as defined by Ginzburg-Landau theory which remains fixed. Lines of first-order (second-order)
phase transitions are indicated in red (orange). The blue dot in both panels indicates the point of the time-reversal symmetry-
breaking phase transition, the red dot in the panel on the right denotes the onset of the first-order phase transition, both
estimated by Ginzburg-Landau theory. The label “TRS” (“TRSB”) indicates that the ground state is time-reversal symmetry-
preserving (-breaking). The labels 𝐶2 and 𝐶4 indicate the rotational symmetry of the corresponding energy spectrum.
Spin-orbit coupling 𝛽 is plotted as an effective spin-orbit energy 𝛽𝑘2𝐹/(𝑘𝐵𝑇𝑐) where 𝑘2𝐹 = 𝜇/(𝛼 + 5𝛽/4). Reprinted figure with
permission from H. Menke et al., Phys. Rev. B 100, 224505 (2019). Copyright © 2019 by the American Physical Society.
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Figure 4.4. (a)–(f) Band structure in the vicinity of the Fermi energy for parameter sets indicated by the corresponding
labels in Fig. 4.3 along the [100] direction where we expect nodes in a nodal state. The Fermi wave vectors are given by
𝑘𝐹,± = √𝜇/(𝛼 + 5𝛽/4 ± 𝛽). Reprinted figure with permission from H. Menke et al., Phys. Rev. B 100, 224505 (2019). Copyright
© 2019 by the American Physical Society.
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Figure 4.5. Sketch of the pairing amplitudes |Δ𝑥𝑧| and |Δ𝑦𝑧| and of the gap structure in the nodal TRS, TRSB 𝐶2, and
TRSB 𝐶4 phases, see Fig. 4.3. The TRSB 𝐶2 state breaks both TRS and 𝐶4 symmetry. Reprinted figure with permission from
H. Menke et al., Phys. Rev. B 100, 224505 (2019). Copyright © 2019 by the American Physical Society.

the normal-state spin-orbital texture gives rise to nodes (“nodal TRS”). As the four-fold degeneracy of the
bands is lifted, the distinction between intra- and interband pairing becomes possible. For small amplitude
of the pairing potential, i.e. close to 𝑇𝑐, interband pairing is not strong enough to gap out the nodes. As the
temperature is lowered the interband pairing potential increases, shifting the nodes away from the Fermi surface
at 𝑘𝐹,± = √𝜇/(𝛼 + 5𝛽/4 ± 𝛽), which can be seen in the band structure at point (f) in Fig. 4.4. At a critical value
of the pairing potential, the nodes meet and annihilate, marking the recovery of the nodeless TRS phase.

Further increasing the spin-orbit couplingwe find that the transition into the superconducting state becomes
first order. This was already indicated by the sign change of the fourth-order coefficient in Fig. 4.2. From the
rightmost zero of the fourth-order coefficient in Fig. 4.2 we can estimate the location of the onset of the first-
order phase transition in a tricritical point. We find very good agreement between the numerical calculation
and our GL theory, cf. the red dot at 𝛽𝑘2𝐹 ≈ −2.59 𝑘𝐵𝑇𝑐 in the right panel of Fig. 4.3. In the region where the
superconductivity is enhanced beyond the expected critical temperature, the pairing potential also has a much
larger magnitude than is expected from BCS theory. The accompanying very large interband pairing potential
ensures a full gap across the full Fermi surface as can be seen in points (d) and (e) in Fig. 4.3. This state will be
referred to as the “large-gap” phase, in contrast to the other, “small-gap” phases. The origin of the large-gap
phase will be discussed later.

Increasing the spin-orbit coupling beyond 𝛽𝑘2𝐹 ≈ −8.4 𝑘𝐵𝑇𝑐, we observe an abrupt drop in the magnitude
of the pairing potential and the large-gap nodeless TRS phase gives way to a small-gap nodal state. Close to 𝑇𝑐,
a time-reversal symmetric state is realised (“nodal TRS”) whose gap is well approximated by the projected gap
in (3.85) and exhibits line nodes. The line nodes appear along the [100] direction and are shown in point (e)
in Fig. 4.4. As time-reversal symmetry-breaking takes place, the superconducting state exhibits reentrant
behaviour with the time-reversal symmetric state below the critical temperature. In the region of reentrance a
time-reversal symmetry-breaking state is realised but time-reversal symmetry is not broken maximally because
Δ𝑥𝑧 and Δ𝑦𝑧 have unequal magnitude. This intermediate state between (1, 0, 0) and (1, 𝑖, 0) only appears below
𝑇𝑐 and breaks the 𝐶4 rotational symmetry of the spectrum down to 𝐶2, which is why we label it with “TRSB
𝐶2”. As the spin-orbit coupling is increased further, the magnitudes of Δ𝑥𝑧 and Δ𝑦𝑧 converge and the (1, 𝑖, 0)
state is realised which restores the 𝐶4 symmetry and is therefore labelled with “TRSB 𝐶4”. The intermediate
TRSB 𝐶2 state can be visualised as a continuous rotation of the vector 𝒍 from (1, 0, 0) to (1, 𝑖, 0), see Fig. 4.5.
The boundary of the TRSB 𝐶4 phase shows reentrant behaviour, but it is realised at all temperatures beyond
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Figure 4.6. Comparison of the fourth-order coefficient of the free energy as obtained analytically from Ginzburg-Landau
theory (points) and numerically from the Helmholtz free energy (lines) in the presence of cubic anisotropy. The value
𝛽𝑘2𝐹 = −9.92 𝑘𝐵𝑇𝑐 is fixed. The inset is a zoom of the box marked in the full size plot.

𝛽𝑘2𝐹 ≈ −9.7 𝑘𝐵𝑇𝑐. Both the TRSB 𝐶4 and the 𝐶2 phases have extended Bogoliubov Fermi Surfaces.
In the previous sectionwe have estimated the critical value of the spin-orbit couplingwhere the TRSB𝐶4 state

becomes stable just below 𝑇𝑐 from Ginzburg-Landau theory, cf. Fig. 4.2, which is located at 𝛽𝑘2𝐹 ≈ −8.957 𝑘𝐵𝑇𝑐.
We show this estimate as a blue dot in both panels of Fig. 4.3. As already noted earlier, this estimate is in very
good agreement with the value that we get from mean-field theory. In a previous analysis in [66] the critical
spin-orbit energy was estimated at 𝛽𝑘2𝐹 ≈ −11.572𝑘𝐵𝑇𝑐 (expressed in our units) and, therefore, overestimated it
by about 30%. This disagreement stems from from the approximation adopted in [66] that the bands are split
by a constant instead of by the momentum-dependent splitting 𝛽𝑘2. Nevertheless, we confirm that the TRSB
𝐶4 state with Bogoliubov Fermi surfaces is realised at moderate values of spin-orbit coupling.

4.4 Lifting degeneracies with cubic anisotropy

Cubic anisotropy is introduced by 𝛾 ≠ 𝛽 in (3.37). This has the effect that we are no longer able to analytically
evaluate the angular integrals. It is still possible to evaluate the integrals numerically, but convergence is slow.
Hence we use the approach discussed earlier of evaluating the Helmholtz free energy at 𝑇𝑐 as a function of the
magnitude of the pairing potential Δ and fitting a fourth-order polynomial to it to extract the fourth-order
coefficient of the free energy. The result is shown in Fig. 4.6 where points represent the Ginzburg-Landau
expansion and lines the numerically calculated Helmholtz free energy. The agreement is not exact and the
deviation increases with increasing cubic anisotropy but the trend is reproduced correctly, which is why we use
the fourth-order coefficient extracted from the Helmholtz free energy in the following.

We note that cubic anisotropy splits apart the (1, 0, 0) and (1, 1, 1), as well as the (1, 𝑖, 0) and (1, 𝜔, 𝜔2)
solutions which we found to be degenerate in the spherical limit earlier. Positive anisotropy (|𝛾| > |𝛽|) lowers
the free energy of the (1, 0, 0) and (1, 𝑖, 0) states, whereas negative anisotropy (|𝛾| < |𝛽|) favours the (1, 1, 1) and
(1, 𝜔, 𝜔2) states.

In Fig. 4.7 we show a phase diagram just below the critical temperature as a function of spin-orbit coupling

57



4 | bogoliubov fermi surfaces stabilised by spin-orbit coupling

𝛽𝑘
2 𝐹
/(
𝑘 𝐵
𝑇 𝑐
)

cubic anisotropy (𝛾 − 𝛽)𝑘2𝐹/(𝑘𝐵𝑇𝑐)

𝛾 = 𝛽 𝛾 = 2𝛽 𝛾 = 𝛽/2

−10

−8

−6

−4

−2

0

−2 −1 0 1 2

(1, 0, 0)

(1, 𝜔, 𝜔2)

(1, 1, 1)

(1, 0, 0) large

(1, 1, 1) large

(1, 𝑖, 0)

Figure 4.7. Phase diagram just below the critical temperature as a function of spin-orbit coupling and cubic anisotropy
obtained numerically from the Helmholtz free energy. The colour code indicates the superconducting state.

and cubic anisotropy. There is a pronounced asymmetry in the phase diagram between |𝛾| < |𝛽| and |𝛾| > |𝛽|.
In the region where |𝛾| > |𝛽|, the (1, 1, 1) and (1, 𝜔, 𝜔2) states are stabilised, whereas for |𝛾| < |𝛽| we find the
(1, 0, 0) and (1, 𝑖, 0) phases to be more stable. We find the regions of first-order transitions by performing a
direct minimisation of the free energy at 𝑇𝑐. A minimum away from Δ = 0 indicates a large gap state with
a first-order phase transition into the normal state. Whether the phase is “(1, 0, 0) large” or “(1, 1, 1) large”
is decided by which free energy is lower. In the region 𝛾 < 𝛽 the first-order phase transition is suppressed
and disappears entirely for sufficiently large 𝛾. At the same time the time-reversal symmetry-breaking phase
transition moves to smaller |𝛽|. These trends are reversed for 𝛾 > 𝛽.

In Fig. 4.8 we show temperature-dependent phase diagrams along two cuts through Fig. 4.7, viz. 𝛾 = 2𝛽
(dashed line) and 𝛾 = 𝛽/2 (dash-dotted line). As expected no first-order transition is found along the cut
𝛾 = 2𝛽. The estimate for the point of the time-reversal symmetry-breaking phase transition that we obtain from
Ginzburg-Landau theory agrees with the numerical phase diagram. We still find remnants of the large-gap
phase below 𝑇𝑐 in the nodeless TRS phase, because the gap magnitude is still enhanced beyond the expectation
from BCS theory, however the transition into the nodal TRS phase is steep but not abrupt. The intermediate
TRSB 𝐶2 phase is suppressed to very low temperatures and has become very narrow. Along the other cut
𝛾 = 𝛽/2 we do not recover the small-gap phase within the limits of our phase diagram. The onset of the first-
order phase transition in a tricritical point is predicted correctly by Ginzburg-Landau theory. Time-reversal
symmetry breaking on the other hand is not observed because it is obstructed by the large-gap phase.
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Figure 4.8. Phase diagram as a function of temperature along cuts through Fig. 4.7. The colour code represents the gap
magnitude where darker corresponds to smaller, brighter corresponds to larger gap, and white means no gap. (a) Cut
along the direction 𝛾 = 2𝛽. The first-order phase transition is not present at 𝑇𝑐. Below 𝑇𝑐 we find a high-gap phase but the
transition is only weakly first-order. (b) Along the 𝛾 = 𝛽/2 cut the high-gap phase is present, as expected from Fig. 4.7. The
critical temperature is strongly enhanced and larger gap sizes are found. In both figures, the blue dot at 𝑇𝑐 is the point of
time-reversal symmetry breaking and the red dot at 𝑇𝑐 is the tri-critical point as predicted by the Ginzburg-Landau free
energy. Reprinted figure with permission from H. Menke et al., Phys. Rev. B 100, 224505 (2019). Copyright © 2019 by the
American Physical Society.

4.5 Simple model for the first-order phase transition

The first-order phase transition into the large-gap phase, that we observe in Figs. 4.2, 4.3, 4.6, and 4.7 is a
remarkable feature of our phase diagram. Including cubic anisotropy, however, suppresses the first-order phase
transition as shown in Fig. 4.7. This indicates that its appearance depends on the balance between the two
spin-orbit coupling terms. It becomes clear that the transition is controlled by the relative magnitude of the intra-
and interband pairing potentials, which are directly related to the spin-orbit coupling terms of the normal-state
Hamiltonian.

In the Luttinger-Kohn model the ratio between the intra- and interband components of the pairing is fixed
by spin-orbit coupling. In our simple model we will instead introduce an independent parameter 𝑟 to control
the balance. We further remove the spin degree of freedom from the model such that we end up with the
following spinless two-band Hamiltonian

ℎ(𝒌) = (
𝜉𝒌,+ 0
0 𝜉𝒌,−

) , Δ = 𝜂(
𝑟 √1 − 𝑟2
√1 − 𝑟2 −𝑟

) , (4.10)

with the dispersions 𝜉𝒌,± = (1 ± 𝛿)𝜖𝒌 − 𝜇, where 𝛿 parameterises the band splitting and the precise form of 𝜖𝒌 is
unimportant. The band splitting parameter 𝛿 plays a role analogous to the spin-orbit coupling terms in the full
model where the band splitting is characterised by differing effective masses of the Luttinger-Kohn bands in
the spherical limit as illustrated in Fig. 4.1. The pairing potential is determined by the momentum-independent
magnitude 𝜂 and the parameter 𝑟 (0 ≤ 𝑟 ≤ 1) determines the ratio between intra- and interband pairing, where
𝑟 = 0 corresponds to pure interband pairing and 𝑟 = 1 to pure intraband pairing. The intraband pairing
has opposite sign on each band, cf. (3.4). In Fig. 4.7 we observe the first-order phase transition only in the
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Figure 4.9. Phase diagram of the simple model as a function of the pairing ratio 𝑟 and the effective band splitting energy
𝑥 = 𝛿𝜇/(𝑘𝐵𝑇𝑐). A first-order phase transition is only possible for 𝑥 > 𝑥𝑐 because only then there is a region where 𝐹4 < 0.
Reprinted figure with permission from H. Menke et al., Phys. Rev. B 100, 224505 (2019). Copyright © 2019 by the American
Physical Society.

time-reversal symmetric phase and therefore, without loss of generality, we assume 𝜂 to be real.
In our simple model the magnitude of the pairing potential and the ratio between intra- and interband

pairing are both momentum-independent, whereas in the Luttinger-Kohn model these quantities vary across
the Fermi surface. It is nevertheless possible to define this ratio for the Luttinger-Kohn model in terms of the
Fermi-surface average,

𝑟2 = 1
Δ2𝑥𝑧 + Δ2𝑦𝑧

∫ 𝑑Ω
4𝜋
|𝜓𝒌,±|2. (4.11)

To investigate the phase diagram of our simple model, we compute the Ginzburg-Landau free energy up to
fourth order

𝐹 = 𝐹2𝜂2 + 𝐹4𝜂4 +O(𝜂6), (4.12)

and extract the fourth-order coefficient

𝐹4 = 𝑘𝐵𝑇 ∑
𝒌,𝑖𝜔𝑛

[(1 − 𝑟
2)2

2
(�̃�2−𝐺2+ + �̃�2+𝐺2−) − 2𝑟2(1 − 𝑟2)�̃�+�̃�−𝐺+𝐺− +

𝑟4

2
(�̃�2+𝐺2+ + �̃�2−𝐺2−)

+ 𝑟2(1 − 𝑟2)(�̃�+𝐺+ + �̃�−𝐺−)(�̃�+𝐺− + �̃�−𝐺+)], (4.13)

where 𝐺± = (𝑖𝜔𝑛 − 𝜉𝒌,±)−1 and �̃�± = (𝑖𝜔𝑛 + 𝜉𝒌,±)−1. An overall negative sign of the fourth-order coefficient
marks the existence of a first-order phase transition. In Fig. 4.9 we show a phase diagram for the sign of the
fourth-order coefficient as a function of the ratio 𝑟 and the band splitting 𝛿. For sufficiently small 𝑟, i.e. mostly
intraband pairing, we find that 𝐹4 is positive at small band splitting 𝛿, but becomes negative for increasing 𝛿,
and finally returns to a positive value. Under the assumption that higher-order terms in the Ginzburg-Landau
free energy can be ignored, this indicates that the phase transition becomes discontinuous beyond a critical
band splitting, but a continuous transition is recovered as the band splitting is further increased.

This conclusion for the simple model is in qualitative agreement with the phase diagram for the Luttinger-
Kohn model in Figs. 4.3 and 4.7. Calculating the Fermi surface average in (4.11) for a time-reversal symmetric
Γ𝑥𝑧 or Γ𝑦𝑧 pairing state in the spherical limit gives 𝑟 = 1/√5. According to the simplemodel, the phase transition
at this value of 𝑟 becomes discontinuous at |𝑥| = |𝛿𝜇/(𝑘𝐵𝑇𝑐)| ≈ 2.460, which is in very good agreement with the
location of the tricritical point for the full model at |𝑥| ≈ 2.594 (red dot in Fig. 4.3) for which we related the band
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splitting 𝛿 of the simple model to the effective band splitting in the Luttinger-Kohn model 𝛿 = 𝛽/(𝛼 + 5𝛽/4).
Furthermore the simple model can explain the asymmetry of the region of first-order phase transition that we
observed in Fig. 4.7. For |𝛾| > |𝛽|, the intraband pairing potential is enhanced, which, in turn, increases the
value of 𝑟 and, thus, suppresses the first-order transition. Conversely, |𝛾| < |𝛽| reduces the intraband pairing
potential and, thus, 𝑟 and favours the first-order transition.

In both the simple model and the Luttinger-Kohn model the first-order phase transition eventually dis-
appears again, recovering a second-order phase transition at sufficiently large values of the band splitting 𝛿.
However, the reappearance of the second-order phase transition is not marked by a tricritical point but by a
discontinuous jump in the minimum of the free energy and therefore in the gap magnitude. We can observe
this in Fig. 4.3 where there is a jump from a large-gap nodeless TRS to a small-gap nodal TRS also below 𝑇𝑐. To
properly capture this behaviour an expansion of the Ginzburg-Landau free energy to at least eighth order in 𝜂
would be required, which is not performed here.

The appearance of the region of first-order phase transition in Fig. 4.7 can therefore be understood within
this simplified model which removes any complications like nodal gap structure and time-reversal symmetry
breaking. In summary, we have found that the first-order phase transition only depends on the ratio between
intra- and interband pairing.

4.6 Properties of the time-reversal symmetry breaking state

Returning to superconductivity in the Luttinger-Kohn model in the spherically symmetric limit. In this
section we will discuss some of the properties of the time-reversal symmetry breaking state, because it displays
Bogoliubov Fermi surfaces and therefore the behaviour is expected to be different from a pairing state with
only point and line nodes. In the (1, 𝑖, 0) state time-reversal symmetry is broken maximally and therefore we
can write the pairing wave function as Δ = Δ0(Γ𝑥𝑧 + 𝑖Γ𝑦𝑧) where Δ0 is the gap magnitude and can be chosen to
be real. For the further investigation we choose the parameters that are labelled with (a) in Figs. 4.3 and 4.4.

4.6.1 Bogoliubov Fermi surfaces

Tomap out the Bogoliubov Fermi surfaces we search for zeros of the energy eigenvalues. Thanks to the rotational
symmetry around the 𝑧 axis and inversion symmetry, we can restrict ourselves to a slice through the first octant.
The resulting nodal surfaces are shown in figure 4.10. The size of the Bogoliubov Fermi surfaces scales with the
magnitude of the pseudomagnetic field, which is inversely proportional to the band splitting. Since the band
splitting grows as |𝒌|2, we expect the inner Bogoliubov Fermi surface to be larger than the outer one, which is
confirmed in Fig. 4.10. The Bogoliubov Fermi surfaces have the largest volume close to the boundary with the
TRSB 𝐶2 phase, because there the band splitting is smallest. In this region the Bogoliubov Fermi surfaces are
clearly distinguishable from point and line nodes.

4.6.2 Density of states

The Bogoliubov Fermi surfaces will lead to a residual density of states in the superconducting gap because in
the nodal regions Cooper pairs are being broken, which is not expected for clean superconductors. To this
end we compute the density of states numerically from the mean-field dispersions and analytically from the
low-energy single band theory.
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Before we can evaluate the density of states in the low-energy theory we have to apply some approximations.
Close to the Fermi surface we can assume that the magnitude of the momentum is constant with 𝑘𝐹,± =
√𝜇/(𝛼 + 5𝛽/4 ± 𝛽) and therefore the pseudomagnetic field and the projected gap only depend on the value of
the polar angle 𝜃. Then we have for the magnitude of the pseudomagnetic field

|𝒉±(𝜃)| ≈
|𝜂|2√5 + 3 cos(4𝜃)
√8|𝛽|𝑘2𝐹,±

, (4.14)

and for the projected gap
|𝜓±(𝜃)| ≈ 3|𝜂 cos 𝜃 sin 𝜃|2. (4.15)

Then the density of states in the ± band is then given by

𝜌±(𝐸) = N0,±∑
𝑎,𝑏
∫
𝜋

0

𝑏(𝐸 − 𝑎|𝒉±(𝜃)|) sin 𝜃 𝑑𝜃

√(𝐸 − 𝑎|𝒉±(𝜃)|)2 − |𝜓±(𝜃)|2
(4.16)

where the normal-state density of states N0,± is given by

N0,± =
4𝜋√𝜇

(𝛼 + 5𝛽/4 ± 𝛽)3/2
. (4.17)

We have assumed the normal-state density of states N0,± to be constant in the range of the superconducting
gap by which we have also neglected the shift of the chemical potential 𝛾𝒌,±. Evaluating (4.16) numerically, we
find excellent agreement with the numerical results, as shown in Fig. 4.11.

We clearly see the large residual density of states at zero energy in the superconducting gap. This contribution
is as large as 20% of the normal-state density of states. The plateau at zero energy results from the lifting of
the pseudospin degeneracy by the pseudomagnetic field 𝒉. The effect is that the nodal contribution of each
pseudospin species is shifted in energy leading to the scaling 𝜌(𝐸) ∝ (|𝐸 + |𝒉|| + |𝐸 − |𝒉||)/2 instead of
𝜌(𝐸) ∝ |𝐸|. This gives a constant DOS for −|𝒉| < 𝐸 < |𝒉|, as also reported in Ref. [93]. Another effect of
the pseudomagnetic field is a splitting of the coherence peaks: In the absence of the pseudomagnetic field,
we expect a single coherence peak at |𝐸| = Δ0. Upon adding the pseudomagnetic field, it is split into four
coherence peaks at Δ0 + |𝒉±(𝜃 = 𝜋/4)| and Δ0 − |𝒉±(𝜃 = 𝜋/4)|, where 𝜃 = 𝜋/4 is the angle of maximum gap.
The splitting of the coherence peaks is different on the two Fermi surfaces, which is seen by the smaller splitting
of the coherence peaks in Fig. 4.11.

4.6.3 Induced magnetic order parameter

It was pointed out in Ref. [133] that the pseudomagnetic field is related to the manifestation of a subdominant
secondary magnetic order parameter, which is induced by the superconductivity. The subdominant order
parameter is related to the time-reversal odd bilinear that was introduced in (3.10). Evaluating the time-reversal
odd gap product for the (1, 𝑖, 0) state yields

ΔΔ† − 𝑈𝑇Δ∗Δ𝑇𝑈
†
𝑇 =
4
3
Δ20(7𝐽𝑧 − 4𝐽3𝑧 ) ≡ 2Δ20J𝑧. (4.18)

where we have defined J𝑧 as the matrix part of the subdominant order parameter. The form of this order
parameter also describes the two-in-two-out order on the elementary tetrahedra of the pyrochlore lattice, which
is associated with a polarisation along the 𝑧-axis, where it leads to interesting spin-ice physics [143, 144]. Because
the subdominant magnetic order parameter arises from the time-reversal odd part of the superconducting
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H. Menke et al., Phys. Rev. B 100, 224505 (2019). Copyright © 2019 by the American Physical Society.

order parameter and therefore exist jointly, they are referred to as intertwined orders [145, 146]. In a similar
spirit it was recently shown that the time-reversal odd part of the superconducting order parameter of the chiral
𝑑-wave state on the honeycomb lattice gives rise to a loop current order [119].

In Fig. 4.12, we show the expectation value of J𝑧 together with the superconducting gap as functions of
temperature. While both superconductivity and magnetism appear together below the critical temperature,
their onset is notably different: The gap magnitude scales with Δ0 ∼ |𝑇 − 𝑇𝑐|1/2 whereas the magnetic order
parameter scales with ⟨J𝑧⟩ ∼ |𝑇 − 𝑇𝑐|. The linear temperature dependence underlines the subdominant nature
of the order parameter and its relation to the time-reversal odd gap product which suggest that it should go
as ∼ |Δ0|2.

A finite expectation value of J𝑧 generically gives rise to a finite pseudomagnetic field and therefore also
to a momentum-dependent spin polarisation. To understand the interplay between magnetism and supercon-
ductivity we include the subdominant magnetic order parameter𝑚𝑧 in the Ginzburg-Landau expansion from
Appendix D, such that it couples to the superconductivity. Following [147], we redefine:

Σ = (
M𝑧 Δ
Δ† −M𝑇𝑧

) , (4.19)

in Eq. (D.7), where M𝑧 = 𝑚𝑧J𝑧. The lowest-order term that involves a coupling between the superconducting
and magnetic order parameters occurs at third order and has the form

𝑖𝐹3𝑚𝑧(Δ𝑥𝑧Δ∗𝑦𝑧 − Δ∗𝑥𝑧Δ𝑦𝑧), (4.20)

which clearly indicates that the TRSB superconducting state induces the magnetism.
Similar to Appendix D the third-order coefficient can be expanded in products of Green’s functions 𝐺± and
�̃�±. We exclude the magnitude of the order parameters and denote the rest as 𝐹3 such that

𝑘𝐵𝑇 ∑
𝒌,𝜔𝑛

1
3
Tr[(𝐺Σ)3] = 𝐹3𝑚𝑧|Δ0|2. (4.21)

There are 12 terms generated but four of them have vanishing coefficients. It remain eight terms in two groups
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of four,

𝐹3 = 𝑘𝐵𝑇 ∑
𝒌,𝜔𝑛

[
8(𝜖2𝒌,𝑥𝑧 + 𝜖2𝒌,𝑦𝑧)
| ⃗𝜖𝒌|2

(−𝐺−�̃�−𝐺+ − 𝐺−𝐺+�̃�+ + �̃�−𝐺+�̃�+ + 𝐺−�̃�−�̃�+)

+
8(𝜖2𝒌,3𝑧2−𝑟2 + 𝜖

2
𝒌,𝑥2−𝑦2 + 𝜖

2
𝒌,𝑥𝑦)

| ⃗𝜖𝒌|2
(−�̃�−𝐺+𝐺+ + 𝐺−�̃�+�̃�+ + �̃�−�̃�−𝐺+ − 𝐺−𝐺−�̃�+)] (4.22)

All products of Green’s functions involve Green’s functions with different band index. This shows that the
coupling to the magnetic order parameter requires interband pairing. The combination of Green’s functions
appearing in the first line couples the interband component of the magnetic order parameter to one interband
and one intraband component of the superconducting pairing potential. On the other hand, the combination
of Green’s functions in the second line couples the intraband component of the magnetic order parameter to
two interband components of the superconducting order. The latter terms correspond to the coupling of the
magnetic order parameter with the pseudomagnetic field in the low-energy effective model.

In the spherical limit, the coefficients do not depend on the radial component of the momentum whereas
the Green’s functions do not depend on the angular component. Therefore the evaluation of the coefficients
and the Green’s functions can be separated. Writing the coefficients in terms of spherical coordinates yields

8(𝜖2𝒌,𝑥𝑧 + 𝜖2𝒌,𝑦𝑧)
| ⃗𝜖𝒌|2

=
8(𝜖2𝒌,𝑥𝑧 + 𝜖2𝒌,𝑦𝑧)

𝜖2𝒌,3𝑧2−𝑟2 + 𝜖
2
𝒌,𝑥2−𝑦2 + 𝜖

2
𝒌,𝑥𝑦 + 𝜖2𝒌,𝑥𝑧 + 𝜖2𝒌,𝑦𝑧

= 6 sin2(2𝜃), (4.23)

8(𝜖2𝒌,3𝑧2−𝑟2 + 𝜖
2
𝒌,𝑥2−𝑦2 + 𝜖

2
𝒌,𝑥𝑦)

| ⃗𝜖𝒌|2
=

8(𝜖2𝒌,3𝑧2−𝑟2 + 𝜖
2
𝒌,𝑥2−𝑦2 + 𝜖

2
𝒌,𝑥𝑦)

𝜖2𝒌,3𝑧2−𝑟2 + 𝜖
2
𝒌,𝑥2−𝑦2 + 𝜖

2
𝒌,𝑥𝑦 + 𝜖2𝒌,𝑥𝑧 + 𝜖2𝒌,𝑦𝑧

= 5 + 3 cos(4𝜃). (4.24)

The angular integrals are easily evaluated

∫
2𝜋

0
𝑑𝜙∫
𝜋

0
𝑑𝜃 [6 sin2(2𝜃)] sin 𝜃 = 64𝜋

5
, (4.25)

∫
2𝜋

0
𝑑𝜙∫
𝜋

0
𝑑𝜃 [5 + 3 cos(4𝜃)] sin 𝜃 = 96𝜋

5
. (4.26)

Now it comes to integrating the energy and frequency dependence of each term. Before we evaluate the
integration we simplify the terms in each group, because we will see that there are only even terms in 𝜔𝑛 which
allows us to treat 𝜔𝑛 as positive, making the Matsubara sum a lot easier (it also gives an additional factor of 2).

− 𝐺−�̃�−𝐺+ − 𝐺−𝐺+�̃�+ + �̃�−𝐺+�̃�+ + 𝐺−�̃�−�̃�+ = −
2(𝜖− + 𝜖+)

(𝜔2𝑛 + 𝜖2−)(𝜔2𝑛 + 𝜖2+)
. (4.27)

A similar transformation is available for the second term, although it is not so simple

− �̃�−𝐺+𝐺+ + 𝐺−�̃�+�̃�+ + �̃�−�̃�−𝐺+ − 𝐺−𝐺−�̃�+

= − 4𝜖2−
(𝜔2𝑛 + 𝜖2−)2(𝜖− + 𝜖+)

− 2(𝜖− − 𝜖+)
(𝜔2𝑛 + 𝜖2−)(𝜖− + 𝜖+)2

+ 2(𝜖− − 𝜖+)
(𝜖− + 𝜖+)2(𝜔2𝑛 + 𝜖2+)

− 4𝜖2+
(𝜖− + 𝜖+)(𝜔2𝑛 + 𝜖2+)2

. (4.28)

For the first group we find the extremely simple result

2
∞

∑
𝜔𝑛=0
∫
∞

−∞
𝑑𝜖0 ( first group) = 0. (4.29)

2
∞

∑
𝜔𝑛=0
∫
∞

−∞
𝑑𝜖0 (second group) = −

1
𝜋𝑘𝐵𝑇𝑐

̃𝛽 Im[𝜓(1)(1
2
+ 𝑖
̃𝛽𝜇

2𝑘𝐵𝑇𝑐𝜋
)], (4.30)
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where 𝜓(𝑛)(𝑧) is the Polygamma function of 𝑛-th order. As noted earlier, the second group corresponds to the
coupling of the magnetic order parameter with the pseudomagnetic field, so it is not surprising that this gives a
non-vanishing contribution. Putting everything together we find

𝐹3 = −N0
24
𝜋𝑘𝐵𝑇𝑐
𝑔𝑀|Δ0|2 ̃𝛽 Im[𝜓(1)(

1
2
+ 𝑖
̃𝛽𝜇

2𝜋𝑘𝐵𝑇𝑐
)]

≈ N0
𝜇
48
5
𝑔𝑀|Δ0|2, (4.31)

where the last approximation is valid when the band splitting ̃𝛽𝜇 is much larger than 𝑘𝐵𝑇𝑐.
Here we have assumed that the density of states is constant at the Fermi surface. However, 𝐹3 scales like

N0/𝜇 ≈ N ′0 , the derivative of the density of states at the Fermi surface. Therefore we should include particle-
hole asymmetric terms of the normal-state density of states into the calculation. To this end we expand the
density of states N (𝜖0) = N0[1 + 𝜖0/(2𝜇)] and consider the same frequency integrals as before, but with this
additional energy dependence included. For the second group of terms it becomes a lot more difficult because
the Matsubara sum doesn’t converge anymore. Therefore we have to introduce a cutoff frequency Λ of the
attractive pairing interaction

∞

∑
𝜔𝑛=0
→
Λ

∑
𝜔𝑛=0

or in terms of 𝑛
− 12+

Λ
2𝜋𝑘𝐵𝑇

∑
𝑛=0

(4.32)

This gives us for the first group

2
Λ

∑
𝜔𝑛=0
∫
∞

−∞
𝑑𝜖0
𝜖0
2𝜇
( first group) = −

𝐻 Λ
2𝑘𝐵𝑇𝜋
+ ln 4

𝜇(1 − ̂𝛽2)
(4.33)

where𝐻𝑛 is the analytic continuation of the 𝑛-th harmonic number. For the second group we find

2
Λ

∑
𝜔𝑛=0
∫
∞

−∞
𝑑𝜖0
𝜖0
2𝜇
(second group) = 1

2𝜇
(2Re [𝐻

− 12+
𝑖 ̃𝛽𝜇
2𝑘𝐵𝑇𝜋
] − 2Re [𝐻 𝑖 ̃𝛽𝜇+Λ

2𝑘𝐵𝑇𝜋
]) . (4.34)

Combining these results with the contribution of the term for constant density of states, we obtain

𝐹3 = N0𝑔𝑀|Δ0|2
24
5𝜋
{−
̃𝛽
𝑘𝐵𝑇𝑐

Im[𝜓(1)(1
2
+ 𝑖
̃𝛽𝜇

2𝜋𝑘𝐵𝑇𝑐
)] − 2𝜋
3

𝐻 Λ
2𝑘𝐵𝑇𝑐𝜋
+ ln 4

𝜇(1 − ̃𝛽2)
+ 𝜋
𝜇
Re [𝐻

− 12+
𝑖 ̃𝛽𝜇
2𝑘𝐵𝑇𝑐𝜋
− 𝐻 𝑖 ̃𝛽𝜇+Λ

2𝑘𝐵𝑇𝑐𝜋
]}

≈ 𝑔𝑀
N0
𝜇
48
5
[

[
1 −

ln 2Λ𝑒
𝛾

𝜋𝑘𝐵𝑇𝑐

3(1 − ̃𝛽2)
− 1
4
ln(1 + Λ

2

̃𝛽2𝜇2
)]

]
, (4.35)

where the second line is valid in the limit Λ, ̃𝛽𝜇 ≫ 𝑘𝐵𝑇𝑐 and 𝛾 is the Euler-Mascheroni constant.
To gain further insight, we note that the matrix part of the magnetic order parameter J𝑧 is not diagonal in

the band basis, but contributes both interband and intraband components. Its intraband component couples
directly to the pseudomagnetic field generated by the interband pairing potential. This produces the cutoff-
independent contribution to 𝐹3. The interband components of the magnetic order parameter, on the other hand,
couple to both the intra- and interband pairing potentials which results in a cutoff-dependent contribution to
𝐹3. The two contributions have opposite signs and the contribution from the interband component is likely
dominant when Λ ≫ 𝑘𝐵𝑇𝑐. This is surprising, since the intraband component of the pseudomagnetic field is
most obvious at the Fermi surface.
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It is instructive to compare our results to the textbook case of the coupling between ferromagnetic and
superconducting order parameters in a single-band time-reversal symmetry-breaking superconductor [148].
Similar to our case it was found that the third-order coefficient is proportional to N0/𝜇, which implies that the
magnetisation in the superconducting state is on the order of Δ20/𝜇2 and is, hence, expected to be weak. This has
been discussed previously in the context of time-reversal symmetry-breaking superconductors [149, 150]. In
the present case it can be understood in terms of the 𝑗 = 1/2 and = −3/2 quasiparticles that do not participate
in the pairing, cf. (4.1). The spin of these unpaired quasiparticles then compensates the polarisation of the
Cooper pairs as is the case for a non-unitary spin-1/2 superconductor where only the up spin electrons are
paired and the unpaired down spin electrons compensate the polarisation [148]. The presence of a Bogoliubov
Fermi surface, therefore, does not imply a strong magnetisation of the superconductor. A weak magnetisation
will be screened out by Meissner currents at the surface of the superconductor, but we do not consider this
Meissner screening here.

4.7 Summary

In this chapter we have investigated the thermodynamic stability and some experimental signatures of a
pairing state with Bogoliubov Fermi surfaces in the paradigmatic Luttinger-Kohn model. While the topological
protection of the Bogoliubov Fermi surfaces guarantees their stability with respect to symmetry-preserving
perturbations, to exist at all they have to be thermodynamically more stable than a pairing state without them.
It is known that when the bands are four-fold degenerate, the ground state will preserve time-reversal symmetry
and therefore Bogoliubov Fermi surfaces cannot exist in this limit [137]. When the band splitting is very large
compared to the gap, on the other hand, the Bogoliubov Fermi surfaces are small as predicted by the low-energy
effective theory and are therefore hard to distinguish from point or line nodes. In this case it is argued that
a time-reversal symmetry-breaking state is always preferred because it reduces the nodal region [42]. From
this discussion we expect a time-reversal symmetry-breaking phase transition to occur as a function of band
splitting. In the context of the Luttinger-Kohn model, band splitting is controlled by spin-orbit coupling.

To this end, we study the evolution from a time-reversal-symmetric to a time-reversal symmetry-breaking
quintet state as a function of spin-orbit coupling and temperature using mean-field theory. Just below the
critical temperature the phase diagram is well-described by the phenomenological Ginzburg-Landau theory.
We find a rich phase diagram that confirms the predictions in the previous paragraph. For weak spin-orbit
coupling a time-reversal-symmetric pairing state is realised. Upon increasing the spin-orbit coupling strength,
the transition from the normal state into the superconducting state becomes first order. The existence of the
first-order phase transition can be understood in terms of the competition between intra- and interband pairing
and can be enhanced or completely suppressed by cubic anisotropy. Further increasing the spin-orbit coupling
recovers the second-order phase transition and finally a time-reversal symmetry-breaking pairing state is
stabilised at moderate values of spin-orbit coupling. At low temperatures, the time-reversal symmetry-breaking
state displays reentrant behaviour as well as a first-order transition into the time-reversal-symmetric state.

The time-reversal symmetry-breaking state displays Bogoliubov Fermi surfaces and will therefore give rise
to a residual density of states around the Fermi energy which can be as large as 20% of the normal state. The non-
unitary part of the gap product can be identified as a subdominantmagnetic order parameter, whose expectation
value attains a non-zero value with the onset of the time-reversal symmetry-breaking superconducting state.
The resulting magnetisation is small even if the Bogoliubov Fermi surfaces are sizeable and the residual density
of states is large.

67



4 | bogoliubov fermi surfaces stabilised by spin-orbit coupling

In conclusion, we have found that Bogoliubov Fermi surfaces can be thermodynamically stable even if the
residual density of states is large. This result is encouraging for experimental searches for Bogoliubov Fermi
surfaces. Since the size of the Bogoliubov Fermi surfaces depends on the ratio of the interband pairing potential
to the band splitting, materials where this ratio is as large as possible are the best candidates. Heavy-fermion
superconductors are therefore a promising platform and it is intriguing that a large residual density of states
has been observed in URu2Si2 [141].

68



Chapter 5

Even-parity chiral superconductivity in Strontium

Ruthenate

The material presented in this chapter has been published previously in

[234] H. G. Suh, H. Menke, P. M. R. Brydon, C. Timm, A. Ramires, and D. F. Agterberg, “Stabilizing even-
parity chiral superconductivity in Sr2RuO4”, Phys. Rev. Research 2, 032023 (2020).

Since the discovery of high-temperature superconductivity in the cuprates [21], a lot of effort has been
made to understand the mechanism behind the unusually high critical temperature of these compounds. It has
been conjectured that a key ingredient is the quasi-two-dimensional structure of the intercalated copper oxide
planes in these layered perovskites [151]. To further corroborate this hypothesis it was natural to survey other
transition metal oxides that crystallize in a perovskite structure and study their superconductivity.

This search was largely unsuccessful but finally Maeno et al. [82] discovered superconductivity in strontium
ruthenate (Sr2RuO4) whose crystal structure is reminiscent of the one in La2−𝑥Ba𝑥CuO4 as shown in Fig. 5.1.
However, the critical temperature of 𝑇𝑐 ≈ 1.5K was much lower than anticipated from the cuprates. It is
believed that this is due to the fact that the ruthenium with a 4𝑑4 configuration has an even number of electrons,
whereas copper in the 3𝑑9 configuration has an odd number of electrons which allows for stronger spin
fluctuations which have been theorized to be important for a high 𝑇𝑐 [152]. Another important difference is
that in stoichiometric Sr2RuO4 the superconductivity emerges from a metallic state, whereas the stoichiometric
cuprates are usually in a Mott insulating state and have to be hole-doped to attain a Fermi surface and exhibit
superconductivity [153, 154]. In addition it has been shown that the cuprates violate the Wiedemann-Franz law
in the normal state which indicates a breakdown of Fermi liquid theory [155, 156].

The normal state of Sr2RuO4 is a strongly two-dimensional Fermi liquid, in contrast to the cuprates where
superconductivity arises from a Mott insulating state. The two-dimensionality of the electronic structure of
Sr2RuO4 ismanifest in an anisotropy between in-plane and out-of-plane resistivity. The out-of-plane component
is three orders of magnitude larger than in-plane [157]. De Haas-van Alphen measurements [158] and later angle-
resolved photo emission experiments [159–161] show the Fermi surface consists of three weakly corrugated
cylindrical sheets.

5.1 Basic properties of the superconducting state

The superconducting state shows the same strongly two-dimensional behaviour as the normal state. This can
be seen from the anisotropy in the upper critical field𝐻𝑐2 which is maximal for the field aligned parallel to the
RuO plane and decreases rapidly as the axis of the field deviates from the plane [162].
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Sr2RuO4 La2−𝑥Ba𝑥CuO4

Figure 5.1. Crystal structure of Sr2RuO4 in comparison with La2−𝑥Ba𝑥CuO4. The coordinate system in the lower left
corner indicates the directions of the principal crystal axes. Figure by Aleksandra Krajewska.

Various experimental techniques provide substantial evidence for a nodal gap [163, 164], however, the
direction of these line nodes is disputed. Thermal conductivity measurements have reported vertical line
nodes [165], whereas field-angle-dependent specific heat capacity measurements indicate that the nodes are
horizontal [166, 167]. Controversial quasiparticle interference imaging measurements have suggested vertical
line nodes along the Γ-M line [168].

As per Anderson’s theorem, 𝑠-wave superconductors are robust to scattering from non-magnetic impuri-
ties [169]. This implies that any deviation from this behaviour indicates an unconventional pairing state and it
has been found that the superconductivity in Sr2RuO4 is sensitive to both disorder and doping [170, 171].

Another probe for unconventional superconductivity are tunneling experiments. In point contact spec-
troscopy the change in current as a function of bias voltage is measured which corresponds to the density of
states. A zero-bias anomaly for tunneling into Sr2RuO4 indicates an unconventional superconducting state [172].

5.1.1 Time-reversal symmetry-breaking

There is evidence of time-reversal symmetry-breaking in the superconducting phase from both muon-spin
relaxation [51] and the Polar Kerr effect [52]. The onset of time-reversal symmetry-breaking coincides with the
superconducting transition and is observed in ultra-clean samples. It is therefore believed that time-reversal
symmetry-breaking is intrinsic to the superconductivity rather than intrinsic to the material or accidental
through the inclusion of magnetic impurities.

Superconductors with broken time-reversal symmetry should generate a spontaneous supercurrent on
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the surface or at embedded domain walls. However, scanning Hall bar and superconducting interference
device (SQUID) measurements have not been able to detect evidence for these spontaneous edge currents [173].
On the other hand, it has been pointed out that such spontaneous magnetic flux patterns are not a universal
feature [174]. This also falls in line with the a recent report of the absence of edge currents in URu2Si2 which is
widely believed to be a time-reversal symmetry-breaking chiral 𝑑-wave superconductor [175].

5.1.2 Two-component order parameter

The order parameter of the superconductivity has two components, i.e. is described by a two-fold degenerate
representation of the point group. The presence of a multicomponent order parameter is further supported
by tunneling experiments. For instance the behaviour of the temperature dependence of the critical current
through Pb/Ru/Sr2RuO4 junctions shows a topological phase frustration leading to an anomalous suppression
of the critical current [176–178]. A similar experiment using Nb/Ru/Sr2RuO4 junctions showed that below
𝑇𝑐 the current-voltage curves becomes noisy and asymmetric due to the motion of chiral domain walls in
Sr2RuO4 [179–181]. These signatures can only exist if the order parameter has multiple components.

However, none of the above experiments are truly symmetry-sensitive, i.e. they cannot distinguish the
pairing state between the different irreducible representations of the point group. This restriction can be
alleviated by probing thermodynamic quantities which are manifestly ground-state properties and are therefore
guaranteed to represent the true symmetry of the order parameter. One such example of a symmetry-sensitive
thermodynamic quantity is the strain tensor. It can be accesses directly by applying strain to the sample [182–185]
or indirectly by deducing the elastic moduli from ultrasound attenuation [186–188].

Following [42], the coupling of the order parameter to the strain tensor to first order in strain and second
order in the order parameter can be written as

𝐹Γ,strain(𝜂, 𝜖) = −∑
𝛾,𝑚
𝐶(𝛾)V(𝛾,𝑚; 𝜂)𝜖(𝛾,𝑚), (5.1)

where we have stuck to the notation of [42] where 𝛾 runs over all irreducible representations and𝑚 enumerates
the basis functions, 𝜂 is the order parameter, V(𝛾,𝑚; 𝜂) is a bilinear of 𝜂 with the symmetry of the basis
function (𝛾,𝑚), and 𝜖(𝛾,𝑚) is a combination of elements of the strain tensor with symmetry (𝛾,𝑚). The
coupling constants 𝐶(𝛾) are material-dependent real coefficients which are related to the elastic tensor. Further
following [42] we can expand this for a two-component order parameter 𝜂 = (𝜂1, 𝜂2) in the𝐷4ℎ point group,
which corresponds to the 𝐸𝑔/𝑢 representation

𝐹strain = (𝐶(𝐴1𝑔, 1)𝜖(𝐴1𝑔, 1) + 𝐶(𝐴1𝑔, 2)𝜖(𝐴1𝑔, 2))(|𝜂1|2 + |𝜂2|2)

+ 𝐶(𝐵1𝑔)𝜖(𝐵1𝑔)(|𝜂1|2 − |𝜂2|2) + 𝐶(𝐵2𝑔)𝜖(𝐵2𝑔)(𝜂∗1 𝜂2 + 𝜂1𝜂∗2 ). (5.2)

The 𝐴1𝑔 representations of strain correspond to a uniform change in the crystal volume and a deformation in
𝑧-direction, respectively, whereas the 𝐵1𝑔 and 𝐵2𝑔 representations correspond to an anisotropic deformation,
cf. Fig. 5.2 for illustrations. Moreover, it shows that an anisotropic deformation couples to a two-component
order parameter which is key to identifying the gap symmetry in Sr2RuO4.

Stress and strain are related to one another by the elastic tensor of the material. By construction both stress
and strain only have six independent components each and therefore the elastic tensor 𝐶 is a 6 × 6matrix. The
elastic energy can then be determined by Hooke’s law

𝐹elastic =
1
2
𝜖𝑇 ∶ 𝐶 ∶ 𝜖. (5.3)
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Compression Shear

Irrep 𝐴1𝑔 𝐴1𝑔 𝐵1𝑔 𝐵2𝑔
Elastic modulus (𝐶11 + 𝐶22)/2 𝐶33 (𝐶11 − 𝐶12)/2 𝐶66
Single component ✓ ✓
Two component ✓ ✓ ✓ ✓

Figure 5.2. Deformations of the tetragonal unit cell of the Sr2RuO4 crystal in terms of irreducible representations. Solid
lines and dots show the change in crystal structure upon deformation by applied strain. The original crystal structure is
shown using dashed lines and faded dots for reference. Red dots denote Ru, blue dots O, and green dots Sr atoms. The
second deformation in the second𝐴1𝑔 channel is shown as a side-view, the other channels are shown from a top view. There
are two more moduli allowed by symmetry, namely 𝐶13 which couples the two 𝐴1𝑔 strains and 𝐶44 which couples to the 𝐸𝑔
strains. However, these do not couple to the superconducting order parameter in linear order and are thus omitted from
this table.

Not all components of the elastic tensor 𝐶 are non-zero. Assuming Hookean linear isotropic elasticity all
components relating to axial or shear strains immediately have to vanish. Because in the tetragonal system the
𝑥 and 𝑦 directions are equivalent the elastic response in these directions has to be the same. This leaves only
six elements

𝐹elastic =
1
2
(𝐶(𝐴1𝑔, 1)𝜖(𝐴1𝑔, 1)2 + 𝐶(𝐴1𝑔, 2)𝜖(𝐴1𝑔, 2)2 + 2𝐶(𝐴1𝑔, 3)𝜖(𝐴1𝑔, 1)𝜖(𝐴1𝑔, 2)

+ 𝐶(𝐵1𝑔)𝜖(𝐵1𝑔)2 + 𝐶(𝐸𝑔)(𝜖(𝐸𝑔, 1)2 + 𝜖(𝐸𝑔, 2)2) + 𝐶(𝐵2𝑔)𝜖(𝐵2𝑔)2), (5.4)

where we identified in terms of irreducible representations 𝜖(𝐴1𝑔, 1) = 𝜖𝑥𝑥 +𝜖𝑦𝑦, 𝜖(𝐴1𝑔, 2) = 𝜖𝑧𝑧, 𝜖(𝐵1𝑔) = 𝜖𝑥𝑥 −
𝜖𝑦𝑦, 𝜖(𝐵2𝑔) = 2𝜖𝑥𝑦, and 𝜖(𝐸𝑔) = {2𝜖𝑦𝑧, 2𝜖𝑥𝑧} and with coefficients 𝐶(𝐴1𝑔, 1) = (𝐶11 + 𝐶12)/2, 𝐶(𝐴1𝑔, 2) = 𝐶33,
𝐶(𝐴1𝑔, 3) = 𝐶13, 𝐶(𝐵1𝑔) = (𝐶11 − 𝐶12)/2, 𝐶(𝐸𝑔) = 4𝐶44, and 𝐶(𝐵2𝑔) = 4𝐶66.

Due to the coupling of the strain to the superconducting order parameter (5.2), the second derivative of
the strain free energy will show a jump at 𝑇𝑐. The shear moduli related to a two component order parameter
are the ones that couple to 𝜖(𝐵1𝑔) and 𝜖(𝐵2𝑔). Hence a jump in the shear moduli (𝐶11 − 𝐶12)/2 or 𝐶66 at 𝑇𝑐 is a
clear indication of a two-component order parameter. This whole discussion is again summarized in Fig. 5.2. A
discontinuity in the shear elastic modulus 𝐶66 at the critical temperature was recently detected using resonant
ultrasound spectroscopy [188], which implies that the superconducting order parameter of Sr2RuO4 has two
components.

Another effect of the shear strains is that they break the tetragonal symmetry of the crystal. If the two-
component order parameter is formed from components belonging to the same irrep, then it is expected that the
superconducting phase transition is split, because the degeneracy of the components that is protected by crystal
symmetry may now be lifted. For a two-component order parameter in a single irrep one would anticipated
from (5.2) that the superconducting transition splits in a linear cusp as a function of strain. Instead a quadratic
profile as a function of strain with no obvious splitting of the transition was observed [183, 184]. The absence
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of a splitting of the transition suggests the components of the order parameter come from different irreps.
However, this is also problematic because such a degeneracy of states would require fine-tuning to produce a
single superconducting phase transition in the unstrained system, whereas a two-dimensional irrep naturally
has this property.

A splitting under strain also implies that if the order parameter of the ground state breaks time-reversal sym-
metry, the time-reversal symmetry-breaking phase transition will not appear together with superconductivity at
the critical temperature but below. This effect was observed in a recent muon-spin relaxation experiment [185].

5.1.3 An electronic analogue of 3He-𝐵?

The evidence for a two-component order parameter that breaks time-reversal symmetry in combination with
evidence for strong correlations and the strongly two-dimensional electronic structure [51, 52, 82, 185] made
it plausible to assume odd-parity spin-triplet pairing. In Section 2.2.2 we have discussed the possible pairing
states for a single-band superconductor on the square lattice. The same classification was applied to Sr2RuO4
by assuming that there is only a single dominant band for superconductivity. One of the possible odd-parity
pairing states is the chiral 𝑝-wave state

𝒅𝒌 = (𝑘𝑥 ± 𝑖𝑘𝑦) ̂𝒛. (5.5)

This is the same pairing state as it is realized in the 𝐵 phase of superfluid 3He. The analogy is plausible because
the electronic structure exhibits a lot of similarities. The normal state of both Sr2RuO4 and 3He are Fermi
liquids with similar enhancement factors of the specific heat and the spin susceptibility. Furthermore the ratio
of the critical temperature to the Fermi temperature 𝑇𝑐/𝑇𝐹 is of the same order of magnitude [83].

Odd-parity superconductors are very rare in nature, so it was exciting to see a proposal of odd-parity
superconductivity in a very accessible solid state platform. High-quality single crystals of Sr2RuO4 are relatively
easy to make and while experiments still require a dilution fridge, the critical temperature of 1.5K is still several
orders of magnitudes higher than for 3He which has its critical temperature between 1mK to 3mK depending
on pressure [148, 152].

Only a few materials have been identified as possible spin-triplet superconductors. Many of them are
of the class of the Uranium-based heavy-fermion superconductors, such as UBe13 [19], UPt3 [20, 189, 190],
UGe2 [191], or very recently UTe2 [192–194]. In all of these materials superconductivity arises close to or
within a ferromagnetic phase and therefore strong magnetic fluctuations are thought to be key to the pairing
mechanism. However, the radioactivity of Uranium makes these materials hard to deal with. Another candidate
for spin-triplet superconductivity is Copper-intercalated Bismuth Selenide (Cu𝑥Bi2Se3) [38, 195], which has
a very peculiar structure in that it is globally centrosymmetric but locally non-centrosymmetric. However,
the superconductivity in Cu𝑥Bi2Se3 might not be chiral but nematic, i.e. it breaks the three-fold rotational
symmetry of the crystal but time-reversal symmetry is intact [63].

Another important aspect of the chiral 𝑝-wave state is its non-trivial topology. This topic is much more
recent and was therefore not considered in the original proposal by Rice and Sigrist [83], but has certainly
added to the interest in the material. It was shown that that Majorana bound states are pinned in the vortices
of a chiral 𝑝-wave superconductor. These vortices can carry magnetic flux and are not necessarily pinned in
location [196]. This is particularly exciting for type II superconductors like Sr2RuO4, which enters the Abrikosov
vortex lattice phase in the presence of a magnetic field. In theory, by moving these Majorana vortex cores and
interchanging them to exploit their non-Abelian braiding statistics could be used to implement a topological
quantum computer [197, 198].
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5.1.4 Parity of the order parameter

The result by Yosida [199] describes the response of a spin-singlet superconductor to an applied magnetic field
and is discussed in detail in Appendix E. In this case the spin susceptibility and therefore the Knight shift of
the nuclear magnetic resonance (NMR) decreases exponentially below 𝑇𝑐. This result is modified if pairing
of opposite spins is allowed, i.e. spin-triplet pairing. Triplet pairs are characterized by their 𝒅 vector and its
orientation is key to identifying the NMR response. It was shown by Rice and Sigrist [83] that for a 𝑝𝑥 + 𝑖𝑝𝑦
pairing state with the 𝒅 vector along the 𝑧-direction, the spin susceptibility does not decay if the field is applied
in the plane

𝜒𝑆(𝑇)
𝜒0
= 𝑌( Δ0
𝑘𝐵𝑇
) 𝑯 ∥ 𝒛, (5.6)

𝜒𝑆(𝑇)
𝜒0
= 1 𝑯 ⊥ 𝒛. (5.7)

The projection of this state with 𝒅 ∥ ̂𝒛 on the quantization axis is zero, i.e. the spin of the Cooper pair lies in the
plane perpendicular to the 𝒅-vector [148]. If the applied magnetic field is perpendicular to the 𝒅-vector, the
Cooper pairs can orient their spin along the field direction and hence the susceptibility does not change below
𝑇𝑐. If on the other hand the field is applied perpendicular to the plane, i.e. parallel to the 𝒅-vector, the Cooper
pairs cannot reorient, resulting in a reduction of the spin susceptibility.

Hence the chiral 𝑝-wave pairing is unaffected by the Fermi surface polarisation due to an external field in the
𝑎𝑏-plane and therefore a temperature-independent spin susceptibility throughout the whole superconducting
regime is only consistent with spin triplet pairing [152].

In an experiment themagnetic response of a superconductor is usually completely shadowed by theMeissner
effect, because an applied field is expelled from the bulk. Trying to work around this using small grain sized
powder bears different problems related to surface effects. However, Sr2RuO4 is a type-II superconductor,
which allows magnetic flux to penetrate for fields above the lower critical field. In the Abrikosov vortex lattice
phase, the Knight shift can exceed the Meissner shift and it is feasible to work with single crystal samples [152].

This experiment was performed for high-quality crystals of Sr2RuO4 by Ishida et al. [200] for the field in
the 𝑎𝑏-plane. The experiment observed no suppression of the Knight shift below 𝑇𝑐 and has been taken as a
strong evidence for the realisation of spin triplet pairing in Sr2RuO4. A similar experiment was performed a
little later by Duffy et al. [201] who used polarised neutron scattering to probe the susceptibility with the same
result.

This argument was never fully bullet-proof, because it would be expected that the Knight shift is suppressed
if the field is aligned along the 𝑐-axis, but instead no suppression was found for this configuration either [202].
To remedy this inconsistency it was proposed that the weak testing field might induce a phase transition into a
state with 𝒅 ∥ �̂�. This is unlikely, however, because such a state would have nodes where the chiral 𝑝-wave state
does not and the energy barrier to introduce these nodes is larger than the field energy. Additionally, a state with
𝒅 ∥ �̂� is not allowed by tetragonal symmetry and would therefore require a second superconducting transition
below 𝑇𝑐 which has never been observed [203]. In principle this disqualifies these Knight shift measurements as
an argument for the pairing symmetry determination. Nevertheless, it seems that this has been largely ignored
by the community.

This paradigm of chiral 𝑝-wave pairing in Sr2RuO4 as a solid-state analogue to 3He has been recently
challenged when the NMR experiments were revisited in a new context. It was observed that organic super-
conductors with small gap sizes are very sensitive to heating effects due to NMR pulses. It so happens that the
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NMR pulse introduces sufficient energy into the sample to raise the bulk temperature above 𝑇𝑐 such that for
the time of precession of the nuclear magnetic moments the sample is in a normal state instead of a supercon-
ducting state. Therefore the NMR signal will show a normal-state response and not decrease below 𝑇𝑐. This
insight led Pustogow et al. [84] to revisit the NMR experiment on Sr2RuO4 which also has a rather low critical
temperature of only 𝑇𝑐 = 1.5K. It was observed that for the field in the 𝑎𝑏-plane the Knight shift depends on
the pulse energy and for lower energies a suppression of the Knight shift is detected. This new result has been
confirmed by others [85] and had a huge impact on the community. It is now clear that the pairing in Sr2RuO4
is not compatible with chiral 𝑝-wave pairing.

In the light of these novel results the theoretical situation is again open and unclear. The conventional
theoretical methods, like pairing from spin fluctuations in the random phase approximation (RPA), tend to
predict triplet pairing which is not consistent with the new experiments [204–208]. The observed drop in the
Knight shift has led the community to seriously consider even-parity parity pairing states, after they had been
consistently dismissed for a long time [209–211].

This indicates the theoretical literature which has found 𝑝-wave pairing is obviously missing an important
ingredient. In the following we propose that purely local interactions can give rise to a pairing instability in
the 𝐸𝑔 channel, but only once we consider a full three-dimensional model for the normal state. The resulting
pairing state is an 𝑠-wave orbital-antisymmetric spin-triplet pairing state, which appears as a pseudospin-singlet
chiral 𝑑-wave state at the Fermi surface. This state can be stabilised over other irreps by the inclusion of
small symmetry-allowed momentum-dependent spin-orbit couplings which correspond to spin-dependent
hopping between layers. The smallness of these hopping integrals leaves the two-dimensional appearance of
the Fermi surface intact. The state that we propose is consistent with the evidence of a two-component order
parameter [186, 188] and time-reversal symmetry breaking [51, 52, 185]. As already pointed out, the stability
of our proposed state depends sensitively on the details of the normal-state band structure, which we now
consider in detail.

5.2 Band structure

The Fermi surface of Sr2RuO4 consists of three bands which are derived from the𝑇2𝑔 manifold of the 4𝑑 orbitals
of Ru. Taking 𝑧 along the 𝑐-axis, the relevant orbitals are the 𝑥𝑦, 𝑥𝑧, and 𝑦𝑧 orbitals. The “two-dimensional”
majority 𝑥𝑦-band disperses strongly in the 𝑎𝑏 plane, whereas the “one-dimensional” 𝑥𝑧- and 𝑦𝑧-bands only
disperse weakly along 𝑘𝑥 and 𝑘𝑦, respectively. Hybridization and spin-orbit coupling leads to the formation of
three non-intersecting cylindrical Fermi surface sheets, one hole-like and two electron-like [83, 160].

Spin-orbit coupling does not only lift the band-crossing degeneracies but also leads to a mixing of the orbital
character of the 𝑥𝑦 band with the {𝑥𝑧, 𝑦𝑧} bands [212]. The expectation value ⟨𝒍 ⋅ 𝒔⟩ with 𝒍 and 𝒔 being the
orbital and spin angular momentum operators, is non-zero over large regions of the three sheets of the Fermi
surface, indicating strong momentum-dependent spin-orbital entanglement. This means that the eigenstates
cannot be factorized into independent spin and orbital parts and a classification of the Cooper pairs in terms of
pure spin singlets and triplets breaks down [160]. Therefore it can be assumed that the superconductivity is not
limited to a single band and interband effects must be taken into account as well.

5.2.1 Three orbital system in 𝐷4ℎ

Sr2RuO4 crystallizes in the tetragonal I4/mmm space group and therefore the crystal point group around the
Ru atoms is𝐷4ℎ. This is reminiscent of the configuration of the Cu atoms in the cuprates materials class which
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Figure 5.3. The 𝑇2𝑔 manifold of the 𝑑 orbitals. The first column shows the orbitals in their unmodified form, the other
columns after application of the transformation as annotated.

are know to be high-temperature superconductors. As can be seen from the sketch of the crystal structure of
Sr2RuO4 in Fig. 5.1, the crystal structure is almost identical to the one of the cuprates.

As mentioned before the bands are derived from the 𝑇2𝑔 manifold of the 4𝑑 electrons of Ru. Therefore the
basis set is given by three orbitals 𝑑𝑦𝑧, 𝑑𝑥𝑧, and 𝑑𝑥𝑦 (we will assume this order throughout). The effect of the
point group symmetry operations on the orbitals can be derived by considering the transformation properties
of the angular momentum, which is shown in Appendix B.1. Here we summarize the matrix form of these
operations

𝐶4 ∶ (
𝑑𝑦𝑧 → −𝑑𝑥𝑧
𝑑𝑥𝑧 → 𝑑𝑦𝑧
𝑑𝑥𝑦 → −𝑑𝑥𝑦

) ≡ (
0 1 0
−1 0 0
0 0 −1

) , 𝜎ℎ ∶ (
𝑑𝑦𝑧 → −𝑑𝑦𝑧
𝑑𝑥𝑧 → −𝑑𝑥𝑧
𝑑𝑥𝑦 → 𝑑𝑥𝑦

) ≡ (
−1 0 0
0 −1 0
0 0 1

) ,

𝐶′2(𝑥) ∶ (
𝑑𝑦𝑧 → 𝑑𝑦𝑧
𝑑𝑥𝑧 → −𝑑𝑥𝑧
𝑑𝑥𝑦 → −𝑑𝑥𝑦

) ≡ (
1 0 0
0 −1 0
0 0 −1

) , 𝜎𝑣(𝑥) ∶ (
𝑑𝑦𝑧 → −𝑑𝑦𝑧
𝑑𝑥𝑧 → 𝑑𝑥𝑧
𝑑𝑥𝑦 → −𝑑𝑥𝑦

) ≡ (
−1 0 0
0 1 0
0 0 −1

) ,

𝐶″2 (𝑥 = 𝑦) ∶ (
𝑑𝑦𝑧 → −𝑑𝑥𝑧
𝑑𝑥𝑧 → −𝑑𝑦𝑧
𝑑𝑥𝑦 → 𝑑𝑥𝑦

) ≡ (
0 −1 0
−1 0 0
0 0 1

) , 𝜎𝑑(𝑥 = 𝑦) ∶ (
𝑑𝑦𝑧 → 𝑑𝑥𝑧
𝑑𝑥𝑧 → 𝑑𝑦𝑧
𝑑𝑥𝑦 → 𝑑𝑥𝑦

) ≡ (
0 1 0
1 0 0
0 0 1

) ,

𝐼 ∶ trivial ≡ (
1 0 0
0 1 0
0 0 1

) .

An illustration of these operations is shown in Fig. 5.3. The transformation properties of the spin have already
been listed Section 2.2.1.
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The orbital degree of freedom will be encoded in 3 × 3matrices. The Gell-Mann matrices form a basis of
SU(3) and are therefore a basis for all 3 × 3matrices. Using the forms of the symmetry operations above, we
can determine the transformation properties of the Gell-Mann matrices. The numbering of the Gell-Mann
matrices is not unique and differs throughout the literature. Here we choose the following order

𝜆1 = (
0 1 0
1 0 0
0 0 0

) , 𝜆2 = (
0 0 1
0 0 0
1 0 0

) , 𝜆3 = (
0 0 0
0 0 1
0 1 0

) , 𝜆4 = (
0 −𝑖 0
𝑖 0 0
0 0 0

) ,

𝜆5 = (
0 0 −𝑖
0 0 0
𝑖 0 0

) , 𝜆6 = (
0 0 0
0 0 −𝑖
0 𝑖 0

) , 𝜆7 = (
1 0 0
0 −1 0
0 0 0

) , 𝜆8 =
1
√3
(
1 0 0
0 1 0
0 0 −2

) .

(5.8)

These matrices are Hermitian and trace-orthonormal, i.e.

Tr[𝜆𝑖𝜆𝑗] = 2𝛿𝑖𝑗. (5.9)

Additionally we define 𝜆0 to be proportional to the unit matrix but with the correct normalisation

𝜆0 = √
2
3
(
1 0 0
0 1 0
0 0 1

) . (5.10)

We proceed to examine the transformation properties of the Gell-Mann matrices under the operations of
the point group that we have derived before. We list the character of the matrices under these transformations
in the following table

𝐶4 𝐶′2 𝐶″2 𝜎ℎ 𝜎𝑣 𝜎𝑑

𝜆0 +1 +1 +1 +1 +1 +1
𝜆1 −1 −1 +1 +1 −1 +1
𝜆2 0 0 0 −1 0 0
𝜆3 0 0 0 −1 0 0
𝜆4 +1 −1 −1 +1 −1 −1
𝜆5 0 0 0 −1 0 0
𝜆6 0 0 0 −1 0 0
𝜆7 −1 +1 −1 +1 +1 −1
𝜆8 +1 +1 +1 +1 +1 +1

(5.11)

Comparing this to the character table of the𝐷4ℎ in Tab. A.1 yields the following classification

𝜆0, 𝜆8 ∈ 𝐴1𝑔, 𝜆1 ∈ 𝐵2𝑔, 𝜆2, 𝜆3 ∈ 𝐸𝑔, 𝜆4 ∈ 𝐴2𝑔, 𝜆5, 𝜆6 ∈ 𝐸𝑔, 𝜆7 ∈ 𝐵1𝑔. (5.12)

For the Pauli matrices of the spin part the classification is already listed in (2.31).
The normal-state of Sr2RuO4 shows no signs of time-reversal symmetry breaking and the crystal is cen-

trosymmetric. Therefore the Hamiltonian may only contain matrices that are even under time-reversal and
inversion. The time-reversal operator is defined as 𝑇 = 𝑖𝜎2K where K is the antiunitary complex conjugation
operator and 𝑈𝑇 = 𝑖𝜎2 is the unitary part. The following table lists the Kronecker products of Gell-Mann and
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Pauli matrices that are even under time-reversal. The allowed terms are enclosed in brackets

𝑈†𝑇(𝜆𝜈𝜎𝜇)∗𝑈𝑇 = ±𝜆𝜈𝜎𝜇 (5.13)

𝜎0 𝜎1 𝜎2 𝜎3

[[[[

[

]]]]

]

𝜆0 +1 −1 −1 −1
𝜆1 +1 −1 −1 −1
𝜆2 +1 −1 −1 −1
𝜆3 +1 −1 −1 −1

[[

[

]]

]

𝜆4 −1 +1 +1 +1
𝜆5 −1 +1 +1 +1
𝜆6 −1 +1 +1 +1

[ ]
𝜆7 +1 −1 −1 −1
𝜆8 +1 −1 −1 −1

(5.14)

Now we can go ahead and classify the operators according to their point group symmetry using the product
table for𝐷4ℎ in Tab. A.3. Again, terms allowed by time-reversal symmetry are enclosed in brackets

𝜎0 𝜎1 𝜎2 𝜎3

[[[[

[

]]]]

]

𝜆0 𝐴1𝑔 𝐸𝑔 𝐸𝑔 𝐴2𝑔
𝜆1 𝐵2𝑔 𝐸𝑔 𝐸𝑔 𝐵1𝑔
𝜆2 𝐸𝑔 𝐴1𝑔 ⊕ [𝐴2𝑔] ⊕ 𝐵1𝑔 ⊕ 𝐵2𝑔 𝐴1𝑔 ⊕ [𝐴2𝑔] ⊕ 𝐵1𝑔 ⊕ 𝐵2𝑔 𝐸𝑔
𝜆3 𝐸𝑔 𝐴1𝑔 ⊕ [𝐴2𝑔] ⊕ 𝐵1𝑔 ⊕ 𝐵2𝑔 𝐴1𝑔 ⊕ [𝐴2𝑔] ⊕ 𝐵1𝑔 ⊕ 𝐵2𝑔 𝐸𝑔

[[

[

]]

]

𝜆4 𝐴2𝑔 𝐸𝑔 𝐸𝑔 𝐴1𝑔
𝜆5 𝐸𝑔 𝐴1𝑔 ⊕ [𝐴2𝑔] ⊕ 𝐵1𝑔 ⊕ 𝐵2𝑔 𝐴1𝑔 ⊕ [𝐴2𝑔] ⊕ 𝐵1𝑔 ⊕ 𝐵2𝑔 𝐸𝑔
𝜆6 𝐸𝑔 𝐴1𝑔 ⊕ [𝐴2𝑔] ⊕ 𝐵1𝑔 ⊕ 𝐵2𝑔 𝐴1𝑔 ⊕ [𝐴2𝑔] ⊕ 𝐵1𝑔 ⊕ 𝐵2𝑔 𝐸𝑔

[ ]
𝜆7 𝐵1𝑔 𝐸𝑔 𝐸𝑔 𝐵2𝑔
𝜆8 𝐴1𝑔 𝐸𝑔 𝐸𝑔 𝐴2𝑔

(5.15)

There are four operators which have the label𝐴1𝑔 ⊕[𝐴2𝑔]⊕𝐵1𝑔 ⊕𝐵2𝑔, i.e. the direct product will be a direct sum
involving terms in each of these irreducible representations. That means we have to combine the individual
products such that each of these representations is exhausted. We find

𝜆5𝜎1 − 𝜆6𝜎2 ∈ 𝐵2𝑔, (5.16)

𝜆5𝜎1 + 𝜆6𝜎2 ∈ 𝐴2𝑔, (5.17)

𝜆5𝜎2 − 𝜆6𝜎1 ∈ 𝐴1𝑔, (5.18)

𝜆5𝜎2 + 𝜆6𝜎1 ∈ 𝐵1𝑔. (5.19)

We can now summarize the results of this classification in the following table which lists all the allowed terms
together with their character under the point group transformations, their irreducible representation and what
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polynomial they transform like

(𝑎, 𝑏) 𝐶4 𝐶2(𝑥) 𝐶2(𝑥 = 𝑦) 𝜎ℎ 𝜎𝑣(𝑥) 𝜎𝑑(𝑥 = 𝑦) irrep transforms

(0, 0) +1 +1 +1 +1 +1 +1 𝐴1𝑔 1
(4, 3) +1 +1 +1 +1 +1 +1 𝐴1𝑔 1
(8, 0) +1 +1 +1 +1 +1 +1 𝐴1𝑔 1
(5, 2) − (6, 1) +1 +1 +1 +1 +1 +1 𝐴1𝑔 1

(5, 1) + (6, 2) +1 −1 −1 +1 −1 −1 𝐴2𝑔 𝑥𝑦(𝑥2 − 𝑦2)

(7, 0) −1 +1 −1 +1 +1 −1 𝐵1𝑔 𝑥2 − 𝑦2

(5, 2) + (6, 1) −1 +1 −1 +1 +1 −1 𝐵1𝑔 𝑥2 − 𝑦2

(1, 0) −1 −1 +1 +1 −1 +1 𝐵2𝑔 𝑥𝑦
(5, 1) − (6, 2) −1 −1 +1 +1 −1 +1 𝐵2𝑔 𝑥𝑦

(2, 0) +(3, 0) −1 −(3, 0) −1 +1 +(3, 0) 𝐸𝑔 𝑥𝑧
(3, 0) −(2, 0) +1 −(2, 0) −1 −1 +(2, 0) 𝐸𝑔 𝑦𝑧

(4, 1) +(4, 2) −1 −(4, 2) −1 +1 +(4, 2) 𝐸𝑔 𝑥𝑧
(4, 2) −(4, 1) +1 −(4, 1) −1 −1 +(4, 1) 𝐸𝑔 𝑦𝑧

(5, 3) +(6, 3) +1 +(6, 3) −1 −1 −(6, 3) 𝐸𝑔 𝑦𝑧
(6, 3) −(5, 3) −1 +(5, 3) −1 +1 −(5, 3) 𝐸𝑔 −𝑥𝑧

(5.20)

This is in agreement with [213].

5.2.2 Microscopic model for the normal-state Hamiltonian

To construct the most general three-dimensional tight-binding Hamiltonian we include the 𝑇2𝑔 manifold of
the Ru 𝑑𝑦𝑧, 𝑑𝑥𝑧, and 𝑑𝑥𝑦 orbitals (we will assume this order throughout). Writing the Hamiltonian in terms
of Nambu spinors Ψ𝒌 = (𝑐𝒌,2,↑, 𝑐𝒌,2,↑, 𝑐𝒌,1,↑, 𝑐𝒌,1,↓, 𝑐𝒌,3,↑, 𝑐𝒌,3,↓) where we enumerate the orbitals with 1 = 𝑑𝑥𝑧,
2 = 𝑑𝑦𝑧, and 3 = 𝑑𝑥𝑦

𝐻0 = ∑
𝒌
Φ†𝒌𝐻0(𝒌)Φ𝒌 (5.21)

with the BdG-Hamiltonian𝐻0(𝒌). The BdG-Hamiltonian can be decomposed in terms of Gell-Mann and Pauli
matrices as

𝐻0(𝒌) = ∑
𝑎,𝑏
ℎ𝑎𝑏(𝒌)𝜆𝑎 ⊗ 𝜎𝑏. (5.22)

Previously we have worked out which terms are allowed for 𝑎 and 𝑏 to satisfy time-reversal and inversion
symmetry. The allowed combinations are listed in (5.20). The corresponding functional forms of the coefficients
ℎ𝑎𝑏 are listed in Tab. 5.1. The on-site spin-orbit coupling in the 𝐴1𝑔 representation is an atomic effect, whereas
the momentum-dependent spin-orbit coupling is an effect of the crystal system.

The parameter for the on-site atomic spin-orbit coupling may have different values for the spin in the plane
(𝜂⟂) and the spin out of plane (𝜂𝑧). The intra-orbital hoppings 𝜉11,22,33(𝒌) have been truncated after next-next-
nearest neighbours in plane and next-nearest neighbours out of plane. The inter-orbtial hopping between 𝑑𝑦𝑧
and 𝑑𝑥𝑧 is parameterised by 𝜆(𝒌) and is kept up to next-nearest neighbours in plane and nearest neighbour
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(𝑎, 𝑏) Irrep Type Explicit form of ℎ𝑎𝑏(𝒌)

(0, 0) 𝐴1𝑔 intra-orb. hopping 1
√6 [𝜉11(𝒌) + 𝜉22(𝒌) + 𝜉33(𝒌)]

(8, 0) 𝐴1𝑔 intra-orb. hopping 1
2√3 [𝜉11(𝒌) + 𝜉22(𝒌) − 2𝜉33(𝒌)]

(4, 3) 𝐴1𝑔 atomic SOC −𝜂𝑧
(5, 2) − (6, 1) 𝐴1𝑔 atomic-SOC 𝜂⟂
(5, 1) + (6, 2) 𝐴2𝑔 𝒌-SOC neglected
(7, 0) 𝐵1𝑔 intra-orb. hopping 1

2 [𝜉22(𝒌) − 𝜉11(𝒌)]
(5, 2) + (6, 1) 𝐵1𝑔 𝒌-SOC 2𝑡SOC

5261(cos 𝑘𝑥𝑎 − cos 𝑘𝑦𝑎)
(1, 0) 𝐵2𝑔 inter-orb. hopping 𝜆(𝒌)
(5, 1) − (6, 2) 𝐵2𝑔 𝒌-SOC 4𝑡SOC

5162 sin 𝑘𝑥𝑎 sin 𝑘𝑦𝑎
{(3, 0), (2, 0)} 𝐸𝑔 inter-orb. hopping 8𝑡13𝑧 sin(𝑘𝑧𝑐/2){cos(𝑘𝑥𝑎/2) sin(𝑘𝑦𝑎/2), sin(𝑘𝑥𝑎/2) cos(𝑘𝑦𝑎/2)}
{(4, 2), (4, 1)} 𝐸𝑔 𝒌-SOC 8𝑡SOC

12𝑧 sin(𝑘𝑧𝑐/2){cos(𝑘𝑥𝑎/2) sin(𝑘𝑦𝑎/2), sin(𝑘𝑥𝑎/2) cos(𝑘𝑦𝑎/2)}
{(5, 3), (6, 3)} 𝐸𝑔 𝒌-SOC 8𝑡SOC

56𝑧 sin(𝑘𝑧𝑐/2){cos(𝑘𝑥𝑎/2) sin(𝑘𝑦𝑎/2), − sin(𝑘𝑥𝑎/2) cos(𝑘𝑦𝑎/2)}

Table 5.1. List of all symmetry-allowed coefficients ℎ𝑎𝑏(𝒌) in the normal-state Hamiltonian𝐻0(𝒌) in (5.22) according to
(5.20). For every matrix, denoted by the indices (𝑎, 𝑏) the corresponding basis function ℎ𝑎𝑏(𝒌)must belong the the same
irrep of𝐷4ℎ. The table also lists the physical process associated with each term. For the two-dimensional irreps, the first
term always transforms as 𝑦𝑧, the second one as 𝑥𝑧. In our calculations 𝑎 = 𝑐 = 1.

out of plane. The inter-orbital hopping between 𝑑𝑦𝑧/𝑑𝑥𝑧 and 𝑑𝑥𝑦 emerges from the two-dimensional 𝐸𝑔 irrep.
Truncating this at a reasonable distance only leaves us with an out-of-plane nearest neighbour hopping. This
truncation is also the reason why the term with𝐴2𝑔 is neglected, since it only appears at next-next-next-nearest
neighbour hopping.

In the table Tab. 5.1, we have omitted the functional form of 𝜉11,22,33(𝒌) and 𝜆(𝒌), because they are too long.
These spin-independent components are consistent with models for the iron pnictides which also realize the
𝐷4ℎ point group [108]. The omitted terms are given by

𝜉11,22(𝒌) = 2𝑡11𝑥,𝑦 cos 𝑘𝑥𝑎 + 2𝑡11𝑦,𝑥 cos 𝑘𝑦𝑎

+ 8𝑡11𝑧 cos(𝑘𝑥𝑎/2) cos(𝑘𝑦𝑎/2) cos(𝑘𝑧𝑐/2)

+ 4𝑡11𝑥𝑦 cos 𝑘𝑥𝑎 cos 𝑘𝑦𝑎 + 2𝑡11𝑥𝑥,𝑦𝑦 cos 2𝑘𝑥𝑎 + 2𝑡11𝑦𝑦,𝑥𝑥 cos 2𝑘𝑦𝑎

+ 4𝑡11𝑥𝑥𝑦,𝑥𝑦𝑦 cos 2𝑘𝑥𝑎 cos 𝑘𝑦𝑎 + 4𝑡11𝑥𝑦𝑦,𝑥𝑥𝑦 cos 2𝑘𝑦𝑎 cos 𝑘𝑥𝑎

+ 2𝑡11𝑧𝑧(cos 𝑘𝑧𝑐 − 1) − 𝜇, (5.23)

𝜉33(𝒌) = 2𝑡33𝑥 (cos 𝑘𝑥𝑎 + cos 𝑘𝑦𝑎)

+ 8𝑡33𝑧 cos(𝑘𝑥𝑎/2) cos(𝑘𝑦𝑎/2) cos(𝑘𝑧𝑐/2)

+ 4𝑡33𝑥𝑦 cos 𝑘𝑥𝑎 cos 𝑘𝑦𝑎 + 2𝑡33𝑥𝑥(cos 2𝑘𝑥𝑎 + cos 2𝑘𝑦𝑎)

+ 4𝑡33𝑥𝑥𝑦(cos 2𝑘𝑥𝑎 cos 𝑘𝑦𝑎 + cos 2𝑘𝑦𝑎 cos 𝑘𝑥𝑎)

+ 2𝑡33𝑧𝑧(cos 𝑘𝑧𝑐 − 1) − 𝜇1, (5.24)

𝜆(𝒌) = 4𝑡12𝑧 sin(𝑘𝑥𝑎/2) sin(𝑘𝑦𝑎/2) cos(𝑘𝑧𝑐/2)

− 4𝑡12𝑥𝑦 sin 𝑘𝑥𝑎 sin 𝑘𝑦𝑎

− 4𝑡12𝑥𝑥𝑦(sin 2𝑘𝑥𝑎 sin 𝑘𝑦𝑎 + sin 2𝑘𝑦𝑎 sin 𝑘𝑥𝑎). (5.25)

At this point it is worth noting that Tab. 5.1 contains terms which are in accordance with existing literature [214–
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216], but others that have so far not been considered. These additional terms are all associated with some kind
of momentum-dependent spin-orbit coupling. We included them at the lowest order at which they appear with
the exception of the 𝐴2𝑔 term, which we neglect because the lowest order at which it appears is 𝑔-wave, which
corresponds to a next-next-next-nearest neighbour hopping, which is assumed to be vanishingly small. This
concludes the construction of the normal-state Hamiltonian andwe now have amodel with 26 free tight-binding
parameters.

5.2.3 Determining the tight-binding parameters

Now it is time to give meaningful values to the 26 parameters. To make our model reproduce a faithful
description of the Fermi surface of Sr2RuO4, we turn to a previous density functional theory (DFT) study
byVeenstra et al. [160]. In this work the band structure of Sr2RuO4 was obtained using ab initioDFT calculations.
Then, the DFT band structure was fitted with a 𝑑-𝑝 model including all five 𝑑 orbitals of the Ru atom, and
the three 𝑝 orbitals of the four inequivalent O atoms, giving 17 orbitals in total. Even though, in principle we
already have a tight-binding description using this model, it is not efficient to describe superconductivity due
to the large number of bands, most of which are far away from the Fermi surface. It is also not possible to
extract just the bands at the Fermi surface by projection because in this model the hopping between Ru atoms
is via the O atoms. Therefore we choose a different approach, where we take the tight-binding model derived
from DFT by Veenstra et al. [160] (which we henceforth refer to as the “DFT model”) and fit our microscopic
three-orbital model that we derived in the previous section to it using the 26 free parameters.

We are going to focus on the electronic states near the Fermi surface, because there will be deviations away
from the Fermi surface due to strong admixture with the oxygen orbitals, especially along the Γ-𝑍 line. This is
not an issue because for superconductivity these areas of the band structure do not play a role since they are
far away from the Fermi surface. The first and foremost priority of the fit is therefore to faithfully reproduce
the Fermi surface. In the DFT model that Fermi surface has some admixture of the oxygen 𝑝 orbital, but for
simplicity we assume that the Fermi surface is dominated entirely by the 𝑇2𝑔 manifold of the Ru 𝑑 orbitals.

To this end we extract the Fermi momenta �̃�𝐹 of the DFT model as reference points. Then we evaluate
our Hamiltonian (which we henceforth refer to as the “fit”) at these momenta and extract several quantities
that we want to have reproduced, which are the 𝑑𝑥𝑦 orbital content, the spin-orbital entanglement, and the
in-plane Fermi velocity. These are easily accessible from both the DFT model and our fit. The free parameters
are then varied according to a least-squares-like algorithm BOBYQA [217] to optimize the deviation of all of
these quantities simultaneously between the fit and the DFT model to a minimum. For this process we define
the following measure, where we denote quantities of the DFT model with tilde and quantities of the fit without

𝑆 = ∑
𝑛=𝛼,𝛽,𝛾, �̃�𝐹

[(𝜖𝑛(�̃�𝐹))
2 + ( ̃𝑑𝑛𝑥𝑦(�̃�𝐹) − 𝑑𝑛𝑥𝑦(�̃�𝐹))

2 + ( ̃𝑝𝑛SOC(�̃�𝐹) − 𝑝𝑛SOC(�̃�𝐹))
2 + ( ̃𝑣𝑛∥ (�̃�𝐹) − 𝑣𝑛∥ (�̃�𝐹))

2], (5.26)

where the sum runs over the Fermi momenta �̃�𝐹 of the DFT model on the three sheets of the Fermi surface
which are enumerated by 𝑛 = 𝛼, 𝛽, 𝛾. Here we have denoted the energy eigenvalues by 𝜖𝑛(𝒌), the 𝑑𝑥𝑦 orbital
content by 𝑑𝑛𝑥𝑦(𝒌), the spin-orbital entanglement by 𝑝𝑛SOC(𝒌), and the in-plane Fermi velocity by ̃𝑣𝑛∥ (𝒌). The
𝑑𝑥𝑦-orbital content is determined by the corresponding components of the eigenvectors of the tight-binding
Hamiltonian (5.22) which we denote by 𝑉

𝑑𝑛𝑥𝑦(𝒌) =
1
2
(|𝑉𝑛,↑𝑑𝑥𝑦,↑(𝒌)|

2 + |𝑉𝑛,↑𝑑𝑥𝑦,↓(𝒌)|
2 + |𝑉𝑛,↓𝑑𝑥𝑦,↑(𝒌)|

2 + |𝑉𝑛,↓𝑑𝑥𝑦,↓(𝒌)|
2). (5.27)
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Figure 5.4. The blue lines are the bands crossing the Fermi surface, extracted the ab-initio DFT calculations in [160]. The
red lines correspond to the model fitted to the DFT bandstructure. Note the the very nice agreement between our fit and
the LDA band structure at low energies, in particular the in-plane velocity.

The spin-orbital entanglement is determined from the expectation value of the atomic spin-orbit coupling
Hamiltonian𝐻SOC = 𝜆5𝜎2 −𝜆6𝜎1 −𝜆4𝜎3 and represents the expectation value ⟨𝒍 ⋅ 𝒔⟩. A non-zero value indicates
that the wavefunction cannot be factorized into independent spin and orbital angular momentum parts [160].
We compute this by

𝑝𝑛SOC(𝒌) = 1 + [
1
2
Re(𝑉𝑛,↑𝑇(𝒌)𝐻SOC𝑉𝑛,↑(𝒌) + 𝑉𝑛,↓𝑇(𝒌)𝐻SOC𝑉𝑛,↓(𝒌))]

1/3
. (5.28)

For the in-plane Fermi velocity we use a simple two-point central finite differences stencil where 𝜀𝑥,𝑦 are small

𝑣𝑛∥ (𝒌) = √|
𝜖𝑛(𝒌 − 𝜀𝑥) − 𝜖𝑛(𝒌 + 𝜀𝑥)

2𝜀𝑥
|
2
+ |
𝜖𝑛(𝒌 − 𝜀𝑦) − 𝜖𝑛(𝒌 + 𝜀𝑦)

2𝜀𝑦
|
2
. (5.29)

In Fig. 5.4 we show the band structure of the DFT model and our fit along a high-symmetry line in the
𝑘𝑧 = 0 plane. In Fig. 5.5 we show the Fermi surface in the 𝑎𝑏 plane at 𝑘𝑧 = 0 and the value of the observables
as a function of the polar angle for both the DFT model and our fit. The agreement of the position, orbital
content, and spin polarisation is excellent and more or less indistinguishable from the DFT model. There is
a slight deviation in the in-plane Fermi velocity which is likely due to discretisation errors from the simple
two-point central finite differences stencil.

However, the good agreement in plane is not sufficient for a faithful reproduction of the Fermi surface. It
has been established by various experiments that the Fermi surface of Sr2RuO4 is cylindrical with only very
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𝛼 𝛽 𝛾

Figure 5.5. Performance of the fit in the 𝑘𝑧 = 0 plane. The reference data from [160] is plotted with red dashed lines, out
fit is shown with solid blue lines. The columns correspond to the 𝛼, 𝛾, and 𝛽 sheets of the Fermi surface, respectively. The
first row shows the Fermi surface in the 𝑘𝑧 = 0 plane. The second row shows the 𝑑𝑥𝑦 orbital content as a function of the
angle around that cut of the Fermi surface. The third row shows the spin polarisation around the cut. The last row shows
the Fermi velocity around the cut.
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𝛼 𝛽 𝛾

Figure 5.6. Performance of the fit in the 𝑘𝑧 direction along the Γ-M line. The reference data from [160] is plotted with
red dashed lines, out fit is shown with solid blue lines. Panel (a) shows results for the band structure from Veenstra et al.
[160], panel (b) for our fit. The columns correspond to the 𝛼, 𝛾, and 𝛽 sheets of the Fermi surface, respectively. The first
row shows the Fermi surface along 𝑘𝑧 in the Γ-M plane. The second row shows the 𝑑𝑥𝑦 orbital content in 𝑘𝑧 direction along
the Fermi surface. The last row shows the spin polarisation along the cut.
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(a)

(b)

Figure 5.7. Panel (a) shows results for the band structure from Veenstra et al. [160], panel (b) for our fit. This just repeats
the results from Fig. 5.5 and Fig. 5.6, but plotted over the 3D Fermi surface.
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𝑡11𝑥 = −362.4 𝑡11𝑦 = −134 𝑡33𝑥 = −262.4 𝑡11𝑥𝑦 = −44.01

𝑡11𝑥𝑥 = −1.021 𝑡11𝑦𝑦 = −5.727 𝑡33𝑥𝑦 = −43.73 𝑡33𝑥𝑥 = 34.23

𝑡12𝑥𝑦 = 16.25 𝑡11𝑥𝑥𝑦 = −13.93 𝑡11𝑥𝑦𝑦 = −7.52 𝑡33𝑥𝑥𝑦 = 8.069

𝑡12𝑥𝑥𝑦 = 3.94 𝜂 = 57.39 𝜇 = 438.5 𝜇1 = 218.6

𝑡11𝑧 = −0.0228 𝑡33𝑧 = 1.811 𝑡12𝑧 = 19.95 𝑡14𝑧 = 8.304

𝑡11𝑧𝑧 = 2.522 𝑡33𝑧𝑧 = −3.159 𝑡SOC
56𝑧 = −1.247 𝑡SOC

12𝑧 = −3.576

𝑡SOC
5162 = −1.008 𝑡SOC

5261 = 0.3779

Table 5.2. Values of the fit parameters of the Hamiltonian (5.22) for a “best” fit where all contributions to the measure were
taken into account with equal weight. All values are in meV.

slight corrugation along the 𝑘𝑧 [158, 159, 161]. This is correctly captured by the DFT model and our fit also
nicely agrees with this result. Note that although there is only a slight corrugation in the Fermi surface, there
is a much stronger corrugation in the orbital/spin-orbit content. We again show the Fermi surface and the
observables in Fig. 5.6, however this time all quantities are plotted as a function 𝑘𝑧 and the Fermi surface is
show along the Γ-𝑀 line.

Finally we summarize the results in Fig. 5.7 where we plot the full 3D Fermi surface, color coded with the
orbital content and the spin polarisation. Visually there is very little difference between the DFT bandstructure
and our fit. The fit parameters that were determined by BOBYQA are summarised in Tab. 5.2.

5.3 Atomic interactions

The pairing mechanism in unconventional superconductors is always a matter of dispute. Instead of trying to
treat the pairing interaction from first principles or a perturbative approach, we here choose a phenomenological
theory with a clear scope. Assume that the electron-electron interaction is described by a function 𝑉(𝒙 − 𝒙′)
and the electron wavefunctions are described by localized Wannier functions 𝑤𝛾,𝜎(𝒙) for an electron in orbital
𝛾 with spin 𝜎 as position 𝒙. The Coulomb self-energy of the atomic orbitals is given by the overlap integral

𝑈 = ∫𝑤∗𝛾,𝜎(𝒙)𝑤∗𝛾,𝜎′ (𝒙)𝑉(𝒙 − 𝒙
′)𝑤𝛾,𝜎(𝒙′)𝑤𝛾,𝜎′ (𝒙′) 𝑑3𝑥𝑑3𝑥′. (5.30)

This is the dominant energy scale in any electronic system, because the overlap of electrons in the same orbital
is always the largest and therefore other effects are usually neglected. However, it has been realised by Kanamori
[218] that in 𝑑 electron systems, orbital mixing plays a major role for the description of magnetism. This is
because due to the orbital mixing, electron wavefunctions are generally a linear combination of Bloch wave-
functions. It is therefore impossible to assign a unique orbital the electronic wavefunction. The corresponding
inter-orbital interaction can be divided into three distinct processes. In the case that the electrons remain in
their respective orbital after scattering we identify the interaction with an inter-orbital Coulomb repulsion

𝑈′ = ∫𝑤∗𝛾,𝜎(𝒙)𝑤∗𝛾′,𝜎′ (𝒙)𝑉(𝒙 − 𝒙
′)𝑤𝛾,𝜎(𝒙′)𝑤𝛾′,𝜎′ (𝒙′) 𝑑3𝑥𝑑3𝑥′. (5.31)

The process of exchanging the electrons between orbitals is referred to as Hund’s exchange interaction

𝐽 = ∫𝑤∗𝛾,𝜎(𝒙)𝑤∗𝛾′,𝜎′ (𝒙)𝑉(𝒙 − 𝒙
′)𝑤𝛾′,𝜎(𝒙′)𝑤𝛾,𝜎′ (𝒙′) 𝑑3𝑥𝑑3𝑥′. (5.32)
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Finally, when electrons are exchanged between orbitals in pairs, we identify the Hund’s pair hopping term

𝐽′ = ∫𝑤∗𝛾,𝜎(𝒙)𝑤∗𝛾,𝜎′ (𝒙)𝑉(𝒙 − 𝒙
′)𝑤𝛾′,𝜎(𝒙′)𝑤𝛾′,𝜎′ (𝒙′) 𝑑3𝑥𝑑3𝑥′. (5.33)

Since we restricted the set of 𝑑 orbitals to the 𝑇2𝑔 manifold, the orbitals can be transformed into each other by
properly chosen canonical transformations, assuming the absence of crystal field splitting, which implies that
𝐽 = 𝐽′.

Assuming that the interactions are strictly local𝑽(𝒙−𝒙′) = 𝑉𝛿(𝒙−𝒙′)wewrite the interactionHamiltonian
in second quantization. The resulting form is often referred to as the Hubbard-Kanamori Hamiltonian [219,
220]

𝐻int =
𝑈
2
∑
𝑖,𝛾,𝜎≠𝜎′
𝑛𝑖𝛾𝜎𝑛𝑖𝛾𝜎′+

𝑈′

2
∑
𝑖,𝜎,𝜎′,
𝛾≠𝛾′

𝑛𝑖𝛾𝜎𝑛𝑖𝛾′𝜎′+
𝐽
2
∑
𝑖,𝜎,𝜎′,
𝛾≠𝛾′

𝑐†𝑖𝛾𝜎𝑐
†
𝑖𝛾′𝜎′𝑐𝑖𝛾𝜎′𝑐𝑖𝛾′𝜎+

𝐽′

2
∑
𝑖,𝜎≠𝜎′,
𝛾≠𝛾′

𝑐†𝑖𝛾𝜎𝑐
†
𝑖𝛾𝜎′𝑐𝑖𝛾′𝜎′𝑐𝑖𝛾′𝜎. (5.34)

The interaction Hamiltonian attains spherical symmetry if the interaction constants obey 𝑈′ = 𝑈 − 2𝐽 [220].
Treating these interactions in full is beyond the scope of this work. Many theoretical treatments of Sr2RuO4
or the iron pnictides start from (5.34) and examine how they renormalize the spin- and charge-fluctuations,
which are then used to construct an effective pairing interaction. We will treat them on the mean-field level
instead. Therefore we will decouple the interaction in the Cooper channel. To this end the intra- and interorbital
Columb interactions can be rearranged in terms of Cooper operators

𝑈
2
∑
𝑖,𝛾,𝜎≠𝜎′
𝑛𝑖𝛾𝜎𝑛𝑖𝛾𝜎′ =

𝑈
2
∑
𝑖,𝛾,𝜎≠𝜎′
𝑐†𝑖𝛾𝜎𝑐
†
𝑖𝛾𝜎′𝑐𝑖𝛾𝜎′𝑐𝑖𝛾𝜎, (5.35)

𝑈′

2
∑
𝑖,𝜎,𝜎′,
𝛾≠𝛾′

𝑛𝑖𝛾𝜎𝑛𝑖𝛾′𝜎′ =
𝑈′

2
∑
𝑖,𝜎,𝜎′,
𝛾≠𝛾′

𝑐†𝑖𝛾𝜎𝑐
†
𝑖𝛾′𝜎′𝑐𝑖𝛾′𝜎′𝑐𝑖𝛾𝜎. (5.36)

With that the interaction can be decomposed in terms of the Gell-Mann and Pauli matrices

𝐻int =
𝑈
2
∑
𝑖
∑
1234
[(1
2
𝜆0𝜆0 +
1
2
𝜆7𝜆7 +
1
2
𝜆8𝜆8)
1
2
(�̄�0�̄�
†
0 +�̄�3�̄�

†
3 )]𝑐
†
𝑖,1𝑐
†
𝑖,2𝑐𝑖,3𝑐𝑖,4

+ 𝑈
′

2
∑
𝑖
∑
1234
[1
2
(𝜆1𝜆1 +𝜆2𝜆2 +𝜆3𝜆3 +𝜆4𝜆4 +𝜆5𝜆5 +𝜆6𝜆6)

1
2
(�̄�0�̄�
†
0 +�̄�1�̄�

†
1 +�̄�2�̄�

†
2 +�̄�3�̄�

†
3 )]𝑐
†
𝑖,1𝑐
†
𝑖,2𝑐𝑖,3𝑐𝑖,4

+ 𝐽
2
∑
𝑖
∑
1234
[1
2
(𝜆1𝜆1 +𝜆2𝜆2 +𝜆3𝜆3 −𝜆4𝜆4 −𝜆5𝜆5 −𝜆6𝜆6)

1
2
(�̄�0�̄�
†
0 +�̄�1�̄�

†
1 +�̄�2�̄�

†
2 +�̄�3�̄�

†
3 )]𝑐
†
𝑖,1𝑐
†
𝑖,2𝑐𝑖,3𝑐𝑖,4

+ 𝐽
′

2
∑
𝑖
∑
1234
[(𝜆0𝜆0 −

1
2
𝜆7𝜆7 −
1
2
𝜆8𝜆8)
1
2
(�̄�0�̄�
†
0 +�̄�3�̄�

†
3 )]𝑐
†
𝑖,1𝑐
†
𝑖,2𝑐𝑖,3𝑐𝑖,4.

(5.37)
where we use the abbreviation 𝜆𝜈𝜆𝜈�̄�𝜇�̄�†𝜇 = 𝜆𝜈,12𝜆𝜈,34�̄�𝜇,12�̄�

†
𝜇,34 with �̄�𝜇 = 𝜎𝜇𝑈𝑇 = 𝜎𝜇𝑖𝜎2. The numbers are

variables which enumerate the orbital and spin indices, similar to the notation found in [81].

Before can determine the energies of the Cooper we have to determine which ones are allowed by fermionic
antisymmetry. Wehave established in (2.61) that if the unitary part of the time-reversal operator is antisymmetric,
then time-reversal symmetry is equivalent to fermionic antisymmetry. This is also the case here, therefore the
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allowed Cooper pairs are

𝜆𝜈�̄�𝜇 = −(𝜆𝜈�̄�𝜇)𝑇 (5.38)

𝜎0 𝜎1 𝜎2 𝜎3

[[[[

[

]]]]

]

𝜆0 ✓ × × ×
𝜆1 ✓ × × ×
𝜆2 ✓ × × ×
𝜆3 ✓ × × ×

[[

[

]]

]

𝜆4 × ✓ ✓ ✓
𝜆5 × ✓ ✓ ✓
𝜆6 × ✓ ✓ ✓

[ ]
𝜆7 ✓ × × ×
𝜆8 ✓ × × ×

(5.39)

The symmetry of these terms has already been tabulated for the normal state in (5.20). From this we can directly
read off the energies of the Cooper pairs

irrep spin structure energy gap structure

𝐴1𝑔 Singlet 𝑈 + 2𝐽′ 𝜆0�̄�0
𝑈 − 𝐽′ 𝜆8�̄�0

Triplet 𝑈′ − 𝐽 𝜆4�̄�3
𝜆5�̄�2 − 𝜆6�̄�1

𝐴2𝑔 Triplet 𝑈′ − 𝐽 𝜆5�̄�1 + 𝜆6�̄�2

𝐵1𝑔 Singlet 𝑈 − 𝐽′ 𝜆7�̄�0
Triplet 𝑈′ − 𝐽 𝜆5�̄�2 + 𝜆6�̄�1

𝐵2𝑔 Singlet 𝑈′ + 𝐽 𝜆1�̄�0
Triplet 𝑈′ − 𝐽 𝜆5�̄�1 − 𝜆6�̄�2

𝐸𝑔 Singlet 𝑈′ + 𝐽 𝜆2�̄�0
𝜆3�̄�0

Triplet 𝑈′ − 𝐽 𝜆5�̄�3
𝜆6�̄�3

Triplet 𝑈′ − 𝐽 𝜆4�̄�1
𝜆4�̄�2

(5.40)

We started from an overall repulsive electronic interaction, but we find channels where the interaction can in
principle become negative. These are the channels with interaction𝑈−𝐽′ and𝑈′ −𝐽. The first case is extremely
unlikely because the intra-orbital Coulomb interaction is the dominant energy scale in any electronic problem
and will always outweigh the Hund’s rule interaction, even if the interaction constants are renormalized.

In contrast, the second case is much more likely and therefore we argue that the system will develop a
superconducting instability in the orbitally anisotropic pairing channels as soon as the renormalized Hund’s
rule interaction 𝐽 exceed the inter-orbital Coulomb repulsion 𝑈′ [118, 221–225]. Vafek and Chubukov [118]
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pointed out that this results in an effective dimensionless coupling constant for pairing in the 𝑠-wave channel of
𝑁0(𝐽 − 𝑈′)(𝜆/𝜇)2, where𝑁0 is the density of states at the Fermi level, 𝜇 is the chemical potential, and 𝜆 is the
magnitude of the atomic spin-orbit coupling. Such a renormalisation of 𝐽 has been discussed in the literature in
the context of the “Hund’s metal” [220, 226–228]. Generally, in the limit of bare local interactions 𝑈′ > 𝐽, but
the ratio of 𝐽/𝑈′ depends on the overall energy scale and we assume that 𝐽/𝑈′ > 1 at low energies to facilitate
pairing [118, 220–224, 226, 227, 229].

Together with the requirement of spherical symmetry we find the condition

𝑈′ − 𝐽 < 0 and 𝑈′ = 𝑈 − 2𝐽 ⟹ 𝐽
𝑈
> 1
3
. (5.41)

This scenario has been studied previously by Vafek and Chubukov [118] in a two-orbital system in𝐷4ℎ. In this
case the𝐴1𝑔 representation only contains two local Cooper pairs, one intra-orbital spin-singlet with interaction
𝑈+𝐽 and another inter-orbital spin-triplet with interaction𝑈′−𝐽. In the presence of spin-orbit coupling a finite
attractive interaction can gives rise to pairing in this channel. We refer to this state as the “Vafek-Chubukov
state”. A similar pairing scenario has been proposed for strontium titanate (SrTiO3)/lanthanum aluminate
(LaAlO3) interfaces, where the low-energy states are described by the 𝑇2𝑔 manifold [230].

In the present case of three orbitals, the Vafek-Chubukov state would correspond to the two 𝐴1𝑔 orbital-
antisymmetric spin-triplets with energy 𝑈′ − 𝐽. However, the Vafek-Chubukov channel is allowed to mix with
every other channel sharing the 𝐴1𝑔 symmetry. The second singlet 𝐴1𝑔 channel with energy 𝑈 − 𝐽might or
might not become attractive in the presence of renormalized interactions, but the tendency goes more towards
repulsive since 𝑈 is by far the most dominant energy scale. The first singlet 𝐴1𝑔 channel with energy 𝑈 + 2𝐽
on the other hand will always remain repulsive. Pairing due to local atomic interactions has been discussed
before by Puetter and Kee [221] in a purely two-dimensional model of Sr2RuO4 where they find an 𝐴1𝑔 state to
be stable.

The situation is similar for the 𝐵1𝑔, 𝐵2𝑔, and 𝐸𝑔 irreps, where a possibly attractive channel is allowed to mix
with a possibly repulsive channel. The only irrep for which this is not the case is 𝐴2𝑔, however, as discussed
earlier the normal-state Hamiltonian does not contain any term with 𝐴2𝑔 symmetry, because the lowest order
polynomial in this irrep is 𝑔-wave.

We propose that these local interactions give rise to a weak-coupling instability in the 𝐸𝑔 channel. We are
motivated by the fact that this pairing instability has been observed in dynamical mean-field theory studies,
which predict that it appears in the strong-coupling limit which corresponds to instabilities at unreasonably
high temperatures, i.e. in the case where the interactions are not renormalized [231], and also in the presence of
strong charge fluctuations [232].

5.4 Projected gap

Before turning to the relative stability of the individual gap functions in the presence of a phenomenological
attractive interaction, we can gain some intuition of which irreps might give rise to a stable gap by looking at
their projection onto the Fermi surface. This will give us an indication of how large the gap is at the Fermi
surface and since we are operating in the weak-coupling limit, a larger gap at the Fermi surface means that the
corresponding gap function is more favourable for superconductivity.

To this end we project the pairing into the band basis at every point in momentum space. Let 𝑉𝒌 denote
the unitary matrix that diagonalises the normal-state Hamiltonian, i.e. the matrix whose columns are the
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eigenvectors. The projected Hamiltonian then reads

�̃�𝒌 ≡ (
�̃�0,𝒌 Δ̃
Δ̃† −�̃�𝑇0,−𝒌

) = (
𝑉†𝒌𝐻0,𝒌𝑉𝒌 𝑉†𝒌 Δ𝑉

∗
𝒌

𝑉𝑇𝒌 Δ†𝑉𝒌 −𝑉𝑇𝒌 𝐻𝑇0,−𝒌𝑉∗𝒌
) , (5.42)

where we are interested in the upper right hand block

Δ̃ = 𝑉†𝒌 Δ𝑉
∗
𝒌 = (

𝜓𝒌,𝛼𝑖𝜎2 (𝜓𝒌,𝛼𝛽 − 𝑖𝒅𝒌,𝛼𝛽 ⋅ 𝝈)𝑖𝜎2 (𝜓𝒌,𝛼𝛾 − 𝑖𝒅𝒌,𝛼𝛾 ⋅ 𝝈)𝑖𝜎2
(𝜓𝒌,𝛼𝛽 + 𝑖𝒅𝒌,𝛼𝛽 ⋅ 𝝈)𝑖𝜎2 𝜓𝒌,𝛽𝑖𝜎2 (𝜓𝒌,𝛽𝛾 − 𝑖𝒅𝒌,𝛽𝛾 ⋅ 𝝈)𝑖𝜎2
(𝜓𝒌,𝛼𝛾 + 𝑖𝒅𝒌,𝛼𝛽 ⋅ 𝝈)𝑖𝜎2 (𝜓𝒌,𝛽𝛾 + 𝑖𝒅𝒌,𝛼𝛾 ⋅ 𝝈)𝑖𝜎2 𝜓𝒌,𝛾𝑖𝜎2

), (5.43)

with intraband pairing amplitudes 𝜓𝒌,𝑎 in band 𝑎, as well as interband pairing amplitudes 𝜓𝒌,𝑎𝑏 and interband
triplet pairing vectors 𝒅𝒌,𝑎𝑏 between between bands 𝑎 and 𝑏. Note, however that for this form we have assumed
that the eigenstates that make up 𝑉𝒌 transform like a pseudospin which is in general not the case when perform-
ing a numerical diagonalisation. Here we are only interested in the intraband pairing amplitudes at the Fermi
surface. Despite the fact that the eigenstates in 𝑉𝒌 might not be a pseudospin, it is still possible to extract the
pairing amplitude by taking the Frobenius norm of the corresponding block of the matrix, e.g.

|𝜓𝒌,𝑎| = ‖𝜓𝒌,𝑎𝑖𝜎2‖𝐹 = √Tr[(𝜓𝒌,𝑎𝑖𝜎2)†(𝜓𝒌,𝑎𝑖𝜎2)]. (5.44)

We show the gap magnitude at the Fermi surface for the 𝐴1𝑔 irrep in Fig. 5.8, for 𝐴2𝑔 in Fig. 5.9, for 𝐵1𝑔
in Fig. 5.10, for 𝐵2𝑔 in Fig. 5.11, and for 𝐸𝑔 in Figs. 5.12, 5.13, and 5.14. The color scale is the same for all these
figures and has been chosen to be normalized to the maximum gap of all projected gaps. Note that the gap in
the 𝐴2𝑔 irrep does not open a gap at the Fermi surface. The gap functions that will give rise to a chiral 𝑑-wave
state are those in the 𝐸𝑔 irrep, however, their projection is very small. We will have to tune the band parameters
to increase the projection of the attractive 𝐸𝑔 channels, such that the leading weak-coupling instability is in
this irrep.
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(a)

(b)

(c)

(d)

(e) |Δ|/|Δmax|

Figure 5.8. Projection of the gaps in the 𝐴1𝑔 irrep onto the Fermi surface. (a) Δ = 𝜆0𝜎0𝑖𝜎2 (b) Δ = 𝜆4𝜎3𝑖𝜎2 (c) Δ =
1
√2 (𝜆5𝜎2 − 𝜆6𝜎1)𝑖𝜎2 (d) Δ = 𝜆8𝜎0𝑖𝜎2. Panel (e) shows the color scale that is used in Figs. 5.8–5.14. Both attractive channels
𝜆4𝜎3 and 𝜆5𝜎2 − 𝜆6𝜎1 have a very small gap on one of the sheets.
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Figure 5.9. Projection of the gap in the 𝐴2𝑔 irrep onto the Fermi surface. The only pairing state in this irrep is Δ =
1
√2 (𝜆5𝜎1 + 𝜆6𝜎2)𝑖𝜎2. As mentioned earlier, because there is no term with 𝐴2𝑔 symmetry in the normal-state Hamiltonian,
the projection of this irrep onto the Fermi surface is vanishing. The color scale is shown in Fig. 5.8(e).

(a)

(b)

Figure 5.10. Projection of the gaps in the 𝐵1𝑔 irrep onto the Fermi surface. (a) Δ = 𝜆7𝜎0𝑖𝜎2 (b) Δ =
1
√2 (𝜆5𝜎2 + 𝜆6𝜎1)𝑖𝜎2.

Note the vertical line nodes along 𝑘2𝑥 − 𝑘2𝑦 = 0. The attractive channel 𝜆5𝜎2 + 𝜆6𝜎1 has a very small gap on one of the sheets.
The color scale is shown in Fig. 5.8(e).
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(a)

(b)

Figure 5.11. Projection of the gaps in the 𝐵2𝑔 irrep onto the Fermi surface. (a) Δ = 𝜆1𝜎0𝑖𝜎2 (b) Δ =
1
√2 (𝜆5𝜎1 − 𝜆6𝜎2)𝑖𝜎2.

Note the vertical line node along 𝑘𝑥𝑘𝑦 = 0. The horizontal line nodes at around 𝑘𝑧𝑐 = 𝜋 are accidental. The color scale is
shown in Fig. 5.8(e).

(a)

(b)

Figure 5.12. Projection of the repulsive gaps in the 𝐸𝑔 irrep onto the Fermi surface. (a) Δ = 𝜆3𝜎0𝑖𝜎2 (b) Δ = 𝜆2𝜎0𝑖𝜎2. The
gap in the upper row transforms like 𝑦𝑧, the gap in the lower row like 𝑥𝑧. Note the horizontal line nodes at 𝑘𝑧𝑐/2𝜋 = −1, 0, 1.
The color scale is shown in Fig. 5.8(e).
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(a)

(b)

Figure 5.13. Projection of the first set of attractive gaps in the 𝐸𝑔 irrep onto the Fermi surface. (a) Δ = 𝜆4𝜎2𝑖𝜎2 (b)
Δ = 𝜆4𝜎1𝑖𝜎2. The gap in the upper row transforms like 𝑦𝑧, the gap in the lower row like 𝑥𝑧. Note the horizontal line nodes
at 𝑘𝑧𝑐/2𝜋 = −1, 0, 1. The color scale is shown in Fig. 5.8(e).

(a)

(b)

Figure 5.14. Projection of the second set of attractive gaps in the 𝐸𝑔 irrep onto the Fermi surface. (a) Δ = 𝜆5𝜎3𝑖𝜎2 (b)
Δ = 𝜆6𝜎3𝑖𝜎2. The gap in the upper row transforms like 𝑦𝑧, the gap in the lower row like 𝑥𝑧. Note the horizontal line nodes
at 𝑘𝑧𝑐/2𝜋 = −1, 0, 1. The color scale is shown in Fig. 5.8(e).
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5.5 Linearized gap equation

Superconductivity forms as a weak-coupling instability in the presence of an infinitesimal attractive interaction.
The low critical temperature of only 𝑇𝑐 = 1.5K indicates that Sr2RuO4 is a weak-coupling superconductor. In
the present situation attractive and repulsive channels are allowed to mix. An order parameter develops in
each channel at 𝑇𝑐, including the repulsive channels which will cost free energy and will suppress the critical
temperature. To examine the relative stability of the irreducible representations we solve the linearized gap
equation, which can be derived from the second term of Ginzburg-Landau theory

𝐹2 = ∑
𝒌,𝒌′

Tr[Δ𝒌𝑉−1𝒌,𝒌′Δ𝒌′ ] + 𝑘𝐵𝑇𝑐 ∑
𝒌,𝑖𝜔𝑛

Tr[𝐺(𝒌, 𝑖𝜔𝑛)Δ𝒌�̃�(𝒌, 𝑖𝜔𝑛)Δ
†
𝒌]. (5.45)

All the irreducible representations in our classification have more than one element. Therefore we write the
matrix pairing potential as a linear combination of these. Since we only assume local pairings, the pairing
interaction 𝑉𝒌,𝒌′ and therefore the pairing potentials are momentum independent. The pairing potential are
given by

Δ = Δ̂𝑈𝑇 = ∑
𝑖
Δ̂𝑖𝑈𝑇 = ∑

𝑖
Δ0,𝑖Γ𝑖𝑈𝑇, (5.46)

where 𝑖 enumerates all elements of a single irreducible representation, Δ0,𝑖 is the amplitude, Γ𝑖 denotes the
appropriate matrices, and 𝑈𝑇 is the unitary part of the time-reversal operator. For example in the 𝐴1𝑔 and 𝐸𝑔
irreps this would read

Δ̂𝐴1𝑔 = Δ0,(0,0)Γ(0,0) + Δ0,(4,3)Γ(4,3) + Δ0,(8,0)Γ(8,0) + Δ0,(5,2)−(6,1)Γ(5,2)−(6,1) (5.47)

= Δ0,(0,0)𝜆0𝜎0 + Δ0,(4,3)𝜆4𝜎3 + Δ0,(8,0)𝜆8𝜎0 + Δ0,(5,2)+(6,1)
1
√2
(𝜆5𝜎2 + 𝜆6𝜎1), (5.48)

Δ̂𝐸𝑔 = Δ0,(2,0),(3,0)(Γ(2,0) + Γ(3,0)) + Δ0,(4,1),(4,2)(Γ(4,1) + Γ(4,2)) + Δ0,(5,3),(6,3)(Γ(5,3) − Γ(6,3)) (5.49)

= Δ0,(2,0),(3,0)
1
√2
(𝜆2𝜎0 + 𝜆3𝜎0) + Δ0,(4,1),(4,2)

1
√2
(𝜆4𝜎1 + 𝜆4𝜎2) + Δ0,(5,3),(6,3)

1
√2
(𝜆5𝜎3 − 𝜆6𝜎3). (5.50)

The normalisation factor of 1/√2 ensures that the matrix parts preserve the trace orthonormality

Tr[Γ𝑖Γ𝑗] = 4𝛿𝑖𝑗, (5.51)

which is important to assess the relative stability of the irreps. We can simplify the gap equation by using the fact
that the hole-like and particle-like Green’s function are related to one another by �̃�(𝒌, 𝑖𝜔𝑛) = −𝐺𝑇(−𝒌, −𝑖𝜔𝑛).
Using the trace orthonormality we have

𝐹2 = ∑
𝑖

Tr[Δ𝑖Δ
†
𝑖 ]
𝑔𝑖
+ 𝑘𝐵𝑇𝑐∑

𝑖𝑗
∑
𝒌,𝑖𝜔𝑛

Tr[𝐺(𝒌, 𝑖𝜔𝑛)Δ̂𝑖𝑈𝑇(−𝐺𝑇(−𝒌, −𝑖𝜔𝑛))𝑈
†
𝑇Δ̂
†
𝑗 ]. (5.52)

Using time-reversal symmetry we find that 𝑈𝑇(−𝐺𝑇(−𝒌, −𝑖𝜔𝑛))𝑈
†
𝑇 = 𝐺(𝒌, −𝑖𝜔𝑛) and therefore

𝐹2 = ∑
𝑖

Tr[Δ𝑖Δ
†
𝑖 ]
𝑔𝑖
+ 𝑘𝐵𝑇𝑐∑

𝑖𝑗
∑
𝒌,𝑖𝜔𝑛

Tr[𝐺(𝒌, 𝑖𝜔𝑛)Δ̂𝑖𝐺(𝒌, −𝑖𝜔𝑛)Δ̂
†
𝑗 ]. (5.53)

Now we evaluate the trace in the band basis with eigenstates |𝒌, 𝛼⟩ such that the Green’s functions are diagonal
and the frequency summation over this product of Green’s functions can be evaluated easily. Decomposing Δ̂𝑖
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into amplitude Δ0,𝑖 and matrix part Γ𝑖 and using the fact that the matrices Γ𝑖 are Hermitian and introducing a
Kronecker delta in the first term, we can write the result as

𝐹2 = ∑
𝑖,𝑗

[

[
𝛿𝑖,𝑗

Tr[Γ𝑖Γ
†
𝑖 ]
𝑔𝑖
+ ∑
𝒌,𝑎,𝑏
⟨𝒌, 𝑎| ̂Γ𝑖|𝒌, 𝑏⟩⟨𝒌, 𝑎| ̂Γ∗𝑗 |𝒌, 𝑏⟩

tanh( 𝜖𝒌,𝑎2𝑘𝐵𝑇𝑐 ) + tanh(
𝜖𝒌,𝑏
2𝑘𝐵𝑇𝑐
)

2(𝜖𝒌,𝑎 + 𝜖𝒌,𝑏)
]

]
Δ0,𝑖Δ∗0,𝑗. (5.54)

We can write the term in brackets as a matrix and as for any linear system, non-trivial solutions are possible
if the determinant of that matrix vanishes. Therefore the solution of the linearized gap equation can also be
written as

det(𝛿𝑖,𝑗
Tr[Γ𝑖Γ

†
𝑖 ]
𝑔𝑖
+ ∑
𝒌,𝑎,𝑏
⟨𝒌, 𝑎| ̂Γ𝑖|𝒌, 𝑏⟩⟨𝒌, 𝑎| ̂Γ∗𝑗 |𝒌, 𝑏⟩

tanh( 𝜖𝒌,𝑎2𝑘𝐵𝑇𝑐 ) + tanh(
𝜖𝒌,𝑏
2𝑘𝐵𝑇𝑐
)

2(𝜖𝒌,𝑎 + 𝜖𝒌,𝑏)
) = 0, (5.55)

In the first term of the determinant in (5.55) the trace Tr[Γ𝑖Γ
†
𝑖 ] always evaluates to 4 because we have chosen

these matrices to be trace orthonormal. In the second term of (5.55) there is a sum over band indices 𝑎 and
𝑏. This can be split into intraband contributions where 𝑎 = 𝑏 and interband contributions where 𝑎 ≠ 𝑏. So
it is possible to discard interband effects entirely, in particular because these don’t contribute to the extreme
weak-coupling limit where 𝑇𝑐 → 0.

From the previous discussion about the Hubbard-Kanamori interactions we know that by symmetry we
have the restrictions

𝑈′ = 𝑈 − 2𝐽 and 𝐽
𝑈
> 1
3
. (5.56)

By that we fix the ratios 𝑈′/𝑈, and 𝐽/𝑈 and can then use 𝑈 to determine the overall energy scale. We choose

𝐽 = 2
5
𝑈. (5.57)

As mentioned earlier the statement that certain superconducting channels with interaction 𝑈′ − 𝐽 will become
attractive was based on the assumption that the interaction constants are strongly renormalized. Therefore it is
probably the case that 𝐽 is not much larger than 𝑈′ and the ratio 𝐽/𝑈 is very close to 1/3. However, moving
this ratio very close to 1/3 leads to vert small attractive interactions, which causes numerical instabilities in
solving the linearized gap equation. The choice of 𝐽/𝑈 = 2/5 is a good trade-off between the assumed physical
reality and numerical stability.

In Fig. 5.15 we show the critical temperature as determined by (5.55). It is clear that for weak coupling, the𝐴1𝑔
irrep will always have a higher critical temperature than the 𝐵1𝑔 irrep. This does not change in the presence of
interband pairing effects, although interband pairing enhances the critical temperature over all. This is seemingly
in contrast to the principle of superconducting fitness [113, 114], which states that interband pairing is expected
to suppress the critical temperature. However, this is not a contradiction because in the superconducting fitness
the comparison was drawn between a pairing state that has no interband contribution at all to one that has. For
a state with interband pairing, the interband pairing still makes a positive contribution to 𝑇𝑐, although by itself
it is insufficient to drive a weak-coupling instability. So the theorem of superconducting fitness is not violated.
Further we find that at weak coupling log𝛽𝑐 scales linearly and the interband contributions only introduces
a constant offset. Additionally, if 𝐽/𝑈′ > 1/3 only close to the Fermi energy, we may ignore the interband
contributions on the ground that away from the Fermi energy there will be no attractive pairing potential in
these channels. Therefore it is safe to neglect the interband contributions for our further investigations.

Pairing due to on-site Hund’s rule interactions in the presence of spin-orbit coupling in amodel Hamiltonian
for the 𝑇2𝑔 𝑑-orbitals in a single-layer perovskite very similar to Sr2RuO4 has previously been considered in
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Figure 5.15. Inverse critical temperature 𝛽𝑐 and critical temperature 𝑇𝑐 as a function of the energy scaling parameter 𝑠. The
dots are connected by lines as a guide to the eye. Solid lines indicate that interband terms have been taken into account,
dashed lines indicate that interband contributions have been neglected.

[221]. An 𝐴1𝑔 pairing state was found to be most stable which is in accordance with Fig. 5.15. However, in [221]
only momentum-independent on-site spin-orbit coupling was considered.

Angle-resolved photo emission (ARPES) experiments have shown that there is a considerable deviation
between the DFT results and the experimental data concerning the strength of the spin-orbit coupling [160,
161, 233]. Therefore we survey a wide range of values for the spin-orbit coupling parameters to learn how they
affect the selection of a stable pairing state. Care must be taken to not jeopardize qualitative agreement the
experimentally established two-dimensionality of the Fermi surface, which puts additional constraints on the
parameters that can be varied.

In our exploration we focus on the effects of three of the spin-orbit coupling terms in the normal-state
Hamiltonian. These are the atomic on-site spin-orbit coupling which is split into an in-plane component
ℎ52 − ℎ61 = 𝜂⟂ and an out-of-plane component ℎ43 = 𝜂𝑧 and one of the momentum-dependent spin-orbit
couplings of the 𝐸𝑔 type {ℎ53, ℎ63}which is parameterised by 𝑡SOC

56𝑧 and describes an inter-layer hopping between
the 𝑑𝑥𝑦 and the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals. It is conceivable to vary other spin-orbit coupling parameters as well,
however, their effect on the selection of the leading instability is negligible within a reasonable range where the
Fermi surface qualitatively reproduces the DFT predictions [234]. We also ignore the anisotropy of the atomic
on-site spin-orbit coupling and set 𝜂𝑧 = 𝜂⟂ = 𝜂.

In panel (a) of Fig. 5.16 we show a phase diagram of the leading instabilities as a function of atomic on-site
spin-orbit coupling 𝜂 and momentum-dependent spin-orbit coupling 𝑡SOC

56𝑧 . The most stable pairing states are
either in the 𝐴1𝑔 or the 𝐸𝑔 irrep. The 𝐴2𝑔 and 𝐵2𝑔 irreps are never competitive, whereas the 𝐵1𝑔 irrep is a
subleading instability in small regions of the phase diagram. The vertical dashed lines indicate the minimal
distance between the different sheets of the Fermi surface in fractions of 2𝜋/𝑎. In the limit of very small atomic
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(a) (b)

Figure 5.16. (a) Phase diagram of the leading instabilities as a function of the spin-orbit coupling parameters 𝜂 and
𝑡SOC
56𝑧 . The vertical dashes lines indicate the minimum distance between the sheets of the Fermi surface in the plane as a
percentage of 2𝜋/𝑎. The thin solid lines indicate the variation of the Fermi surface along 𝑘𝑧 and are therefore a measure of
the two-dimensionality. (b) Envelope of the Fermi surface along the 𝑘𝑧 direction for the 𝐴1𝑔 state and the 𝐸𝑔 state marked
by the red and blue dot in panel (a), respectively. Figure provided by Han-Gyeol Suh.

spin-orbit coupling 𝜂 the sheets of the Fermi surface would touch which is neither predicted from first principles
calculations [160, 212] nor is it consistent with ARPES data [159, 161]. The solid horizontal lines denote the
maximal corrugation of the Fermi surface in the 𝑘𝑧 direction. If the out-of-plane momentum-dependent
spin-orbit coupling is too large, the bands will become too dispersive along 𝑘𝑧, which is again in contradiction
to previous observations.

In panel (b) of Fig. 5.16 we show the envelope of the Fermi surface when viewed from the top, i.e. the shape
of the Fermi surface projected onto the 𝑘𝑥-𝑘𝑦-plane, for two sets of band parameters where either the 𝐴1𝑔 or
the 𝐸𝑔 pairing state is stabilised. For both sets of parameters the Fermi surface looks very similar. The band
parameters for the case of 𝐴1𝑔 (𝐸𝑔) pairing correspond to the location of the red (blue) dot in panel (a). That is,
for 𝐴1𝑔 we have 𝜂 = 57meV and 𝑡56𝑧SOC = 10meV, and for 𝐸𝑔 we have 𝜂 = 40meV and 𝑡56𝑧SOC = 12meV.

The dominant contribution to the 𝐸𝑔 pairing state comes from the {(6, 3), (5, 3)} channel which is of the
same symmetry as the momentum-dependent spin-orbit coupling associated with 𝑡SOC

56𝑧 . The out-of-plane
component of the momentum-dependent spin-orbit coupling implies that a large value of 𝑡SOC

56𝑧 will result in a
more pronounced corrugation along the 𝑘𝑧 direction. Nevertheless, within this reasonable parameter range, it
is possible to stabilize an 𝐸𝑔 pairing state at a value as small as 𝑡SOC

56𝑧 = 5meV. It is remarkable that such a small
variation of the normal-state parameters can have drastic effects on the selection of the pairing state with very
different structure.

In Fig. 5.17 we show the projected gap at the Fermi surface for representative parameters sets where the 𝐴1𝑔
and 𝐸𝑔 states are stable, respectively. For both of them, the gap magnitude on the 𝛼 sheet is much smaller than
on the other sheets which have comparable gap magnitude. Therefore it is not possible to isolate a single band
for superconductivity which is also in contrast to the original proposal which assumed that only the 𝛾 band
is dominant [83, 215, 235]. Neither is it possible to choose the pair of almost one-dimensional 𝛼 and 𝛽 bands,
as proposed in [206]. Also note the deep gap minima in the 𝐸𝑔 state on the 𝛾 band along the diagonal. It is
conceivable that these exhibit characteristics that are similar to vertical line nodes.
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Figure 5.17. Projected gaps on the normal-state Fermi surface in the first Brillouin zone for representative parameter sets
where the (a) 𝐴1𝑔 and (b) 𝐸𝑔 states are stable, respectively. The parameters are the same as in Fig. 5.16 at the red (𝐴1𝑔) and
blue (𝐸𝑔) dot. The color scale is the same for both panels and has been normalized to the maximum of the 𝐴1𝑔 gap.

5.6 Pairing state below the critical temperature

To obtain the superconducting gap as a function of temperature it is not sufficient to solve the linearized gap
equation which only yields information about the pairing state just below the critical temperature and the
critical temperature itself. Instead it is necessary to solve the full gap equation self-consistently. This in turn
poses a problem because a direct minimisation of the free energy (C.46) to obtain the self-consistent gap is not
possible due to the presence of repulsive pairing channels. In this case the minima will no longer be located at
stationary points. Instead consider the stationary point of the free energy given by the system of equations

0 = 𝜕𝐹MF
𝜕Δ∗𝑖
= Tr[Γ𝑖Γ

†
𝑖 ]
𝑔𝑖
Δ𝑖 −
1
2
∑
𝒌,𝑛

tanh(
𝛽𝐸𝒌,𝑛
2
)
𝜕𝐸𝒌,𝑛
𝜕Δ∗𝑖

(5.58)

for each component 𝑖 of the gap. The derivative of the energy eigenvalue is calculated using the Hellmann-
Feynman theorem [236–238] to yield the gap equation

Δ𝑖 =
𝑔𝑖
2Tr[Γ𝑖Γ

†
𝑖 ]
∑
𝒌,𝑛

tanh(
𝛽𝐸𝒌,𝑛
2
)⟨𝒌, 𝑛 | 𝜕𝐻BdG(𝒌)

𝜕Δ∗𝑖
| 𝒌, 𝑛⟩ , (5.59)

where in our case of a momentum independent gap the derivative of the mean-field Hamiltonian takes the
simple form

𝜕𝐻BdG(𝒌)
𝜕Δ∗𝑖
= (
0 Γ𝑖𝑈𝑇
0 0

) . (5.60)
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Figure 5.18. Self consistent solution of the gap equation for 𝑇𝑐 = 1.5K for (a) the 𝐴1𝑔 irrep and (b) the 𝐸𝑔 irrep. The labels
are given in the (𝑎, 𝑏) notation of (5.20).

To solve (5.59) self-consistently we have to iterate the equation until all Δ𝑖 converge. This process is numerically
not very stable and a few tricks are necessary to not avoid runaway situations. Firstly, it is much easier to start
from zero temperature and go to higher temperatures because at lower temperatures the gap is much larger
and therefore the numerical convergence is not so susceptible to rounding errors. The next obvious trick is to
choose a good starting value. Here we initialize all with Δ𝑖 = 1.76 𝑘𝐵𝑇𝑐 which is the value of the gap at zero
temperature for a BCS superconductor. Going to higher temperature we always use the solution of the previous
temperature step as a starting point for the next. The last trick is to weight the solutions of the last two steps
for next, i.e. the starting value of the (𝑗 + 1)-th iteration is Δ(𝑗+1) = 𝑤Δ(𝑗) + (1 − 𝑤)Δ(𝑗−1) where 𝑤 ∈ [0, 1]. This
last trick is crucial to ensure to avoid runaway situations, but it slows down the convergence tremendously.
Therefore it is advantageous to implement a step-width control by which the weighting factor𝑤 is replaced by a
weighting function, e.g. a logistic function 𝜆(𝑤) = 1/(1 + 𝑒−𝑤). The argument of the weighting function can be
increased or decreased depending on the size of the previous step |Δ(𝑗) − Δ(𝑗−1)|. This provides a good trade-off
between convergence speed and accuracy.

In Fig. 5.18 we show self-consistent solutions of the gap equation for the both 𝐴1𝑔 irrep and the 𝐸𝑔 irrep.
The ratio between the pairing states that is determined from the eigenvector of the linearized gap equation is
realised at all temperatures. The chief contribution to both pairing states comes from the orbitally-antisymmetric
channels. The pairing potential is much larger than anticipated from BCS theory. This apparent enhancement
over the BCS limit stems from the fact that the projection of the orbitally anisotropic states onto the Fermi
surface is rather small, so to achieve on average a gap of 1.76 𝑘𝐵𝑇𝑐 at the Fermi surface, the pairing potential
has to be much larger.

5.6.1 Bogoliubov Fermi Surfaces

To connect with the previous chapter, the chiral 𝑑-wave state that we propose to be realised in Sr2RuO4 ticks
all the boxes to be a candidate for Bogoliubov Fermi surfaces:

1. Even parity
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Figure 5.19. Bogoliubov Fermi surface for the chiral 𝑑-wave state. The horizontal line nodes in the 𝑘𝑧 = 0 plane are inflated
into surfaces with a finite extent in 𝑘𝑧. The color code red, green, blue corresponds to the nodal surface on the 𝛼, 𝛽, 𝛾 sheet
of the Fermi surface. Dashed lines mark the boundary of the first Brillouin zone in the plane. Figure prepared with help of
Han-Gyeol Suh.

2. Inter-band pairing

3. Multi-component order parameter

4. Possibility for time-reversal symmetry breaking combination

We therefore search for Bogoliubov Fermi surfaces in the 𝐸𝑔 pairing state parameterised by

Δ̂𝐸𝑔 = Δ0,(2,0),(3,0)
1
√2
(𝜆2𝜎0 + 𝜆3𝜎0) + Δ0,(4,1),(4,2)

1
√2
(𝜆4𝜎1 + 𝜆4𝜎2) + Δ0,(5,3),(6,3)

1
√2
(𝜆5𝜎3 − 𝜆6𝜎3), (5.61)

with the gap amplitudes determined by the self-consistent solution in Fig. 5.18(b). In Fig. 5.19 we show the
Bogoliubov Fermi surfaces that results from a gap magnitude of Δ0 = 0.42meV. The very large Bogoliubov
Fermi surfaces on the 𝛼 band and the “peaks” on the 𝛾 band reflect the deep gap minima on these sheets also
observed in Fig. 5.17. The inflated nodes are very thin in the direction perpendicular to the normal-state Fermi
surface, which makes them appear as flat. Their size in the 𝑘𝑧 direction is about 0.4% of the whole 𝑘𝑧 axis of the
Brillouin zone, so it is unlikely that the corresponding pseudomagnetic field will have a substantial magnitude
and therefore the residual density of states will be too small to be unambiguously observed in an experiment.
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5.6.2 Spin susceptibility and Knight shift

In light of the recent Knight-shift experiments, it is important to establish the response of the 𝐸𝑔 state that
we proposed here [84, 85]. This is important in particular because the spin structure of this 𝐸𝑔 state is a spin-
triplet with in-plane spin polarisation of the Cooper pair which might at first seem contradictory as the new
experiments rule out a triplet pairing state. Therefore it seems natural to expect a temperature-independent
spin susceptibility for in-plane fields. However, this is not the case because the overall parity of the 𝐸𝑔 state is
even which implies that the intraband pairing potential is a pseudospin singlet.

In the following we will derive the spin susceptibility in the superconducting state and numerically evaluate
the Knight shift as a function of temperature for both the 𝐴1𝑔 and the 𝐸𝑔 state. To determine the Knight shift
we start from the dynamic susceptibility (E.5) in the superconducting state

𝜒𝑠𝑡(𝒒, 𝑖𝜔) = ∫
𝛽

0
𝑑𝜏 𝑒𝑖𝜔𝜏⟨𝑇𝜏𝑆𝑎𝑠 (𝒒, 𝜏)𝑆𝑏𝑡 (−𝒒, 0)⟩, (5.62)

but this time the magnetic moment has an additional orbital degree of freedom

𝑆𝑎𝑠 =
1
2𝑁
∑
𝒌,𝛼𝛽
𝑑†𝑠𝛼(𝒌 + 𝒒, 𝜏)𝜎𝑎𝛼𝛽𝑑𝑠𝛽(𝒌, 𝜏). (5.63)

We plug in the magnetic moments and rearrange

𝜒SC𝑠𝑡 (𝒒, 𝑖𝜔) = −
1
4𝑁2
∫
𝛽

0
𝑑𝜏 𝑒𝑖𝜔𝜏 ∑

𝛼𝛽𝛾𝛿
𝜎𝑎𝛼𝛽𝜎𝑏𝛾𝛿 ∑

𝒌,𝒌′
⟨𝑇𝜏𝑑𝑠𝛽(𝒌, 𝜏)𝑑

†
𝑡𝛾(𝒌′ − 𝒒, 0)𝑑𝑡𝛿(𝒌′, 0)𝑑†𝑠𝛼(𝒌 + 𝒒, 𝜏)⟩. (5.64)

Equivalent to the single band case discussed in Appendix E we apply Wick’s theorem to decompose the expecta-
tion value. We proceed to identify the definitions of the Green’s function 𝐺𝑎𝑏(𝒌, 𝜏) = −⟨𝑇𝜏𝑑𝑎(𝒌, 𝜏)𝑑

†
𝑏(𝒌, 0)⟩ and

the anomalous Green’s function 𝐹𝑎𝑏(𝒌, 𝜏) = −⟨𝑇𝜏𝑑𝑎(𝒌, 𝜏)𝑑𝑏(−𝒌, 0)⟩ but with additional orbital indices. After
Fourier transformation into Matsubara frequency space we have

𝜒SC𝑠𝑡 (𝒒, 𝑖𝜔) = −
1
4𝑁𝛽
∑
𝛼𝛽𝛾𝛿
𝜎𝑎𝛼𝛽𝜎𝑏𝛾𝛿 ∑

𝒌,𝑖𝜔𝑛

(𝐺𝑠𝛽;𝑡𝛾(𝒌, 𝑖𝜔𝑛)𝐺𝑡𝛿;𝑠𝛼(𝒌 + 𝒒, 𝑖𝜔𝑛 − 𝑖𝜔) − 𝐹𝑠𝛽;𝑡𝛿(𝒌, 𝑖𝜔𝑛)𝐹
†
𝑡𝛾;𝑠𝛼(𝒌 + 𝒒, 𝑖𝜔𝑛 − 𝑖𝜔)).

(5.65)
In contrast to the single band case in Appendix E it is not possible to determine the Green’s functions analytically.
However, they can be calculated from the spectral form of the Green’s functions of the full BdG-Hamiltonian

G𝑎𝑏(𝒌, 𝑖𝜔𝑛) = (
𝐺(𝒌, 𝑖𝜔𝑛) 𝐹(𝒌, 𝑖𝜔𝑛)
𝐹†(𝒌, 𝑖𝜔𝑛) �̃�(𝒌, 𝑖𝜔𝑛)

)
𝑎𝑏

(5.66)

= ∑
𝜇

𝑎𝑎𝜇(𝒌)𝑎𝑏∗𝜇 (𝒌)
𝑖𝜔𝑛 − 𝐸𝜇(𝒌)

with 𝑎𝜈𝜇(𝒌) = (
𝛼𝜈𝜇(𝒌)
�̄�𝜈𝜇(𝒌)
) (5.67)

= ∑
𝜇

1
𝑖𝜔𝑛 − 𝐸𝜇(𝒌)

(
𝛼𝑎𝜇(𝒌)𝛼𝑏∗𝜇 (𝒌) 𝛼𝑎𝜇(𝒌)�̄�𝑏∗𝜇 (𝒌)
�̄�𝑎𝜇(𝒌)𝛼𝑏∗𝜇 (𝒌) �̄�𝑎𝜇(𝒌)�̄�𝑏∗𝜇 (𝒌)

) (5.68)

where the 𝐸𝜇 are the eigenvalues and 𝑎𝜈𝜇 is the 𝜈-th component of the eigenvector corresponding to the 𝜇-th
eigenvalue of the BdG Hamiltonian. Selecting the appropriate blocks the susceptibility reads

𝜒SC𝑠𝑡 (𝒒, 𝑖𝜔) = −
1
4𝑁𝛽
∑
𝛼𝛽𝛾𝛿
𝜎𝑎𝛼𝛽𝜎𝑏𝛾𝛿 ∑

𝒌,𝑖𝜔𝑛

(
𝛼𝑠𝛽𝜇 (𝒌)𝛼𝑡𝛾∗𝜇 (𝒌)
𝑖𝜔𝑛 − 𝐸𝜇(𝒌)

𝛼𝑡𝛿𝜈 (𝒌 + 𝒒)𝛼𝑠𝛼∗𝜈 (𝒌 + 𝒒)
𝑖𝜔𝑛 − 𝑖𝜔 − 𝐸𝜈(𝒌 + 𝒒)

−
𝛼𝑠𝛽𝜇 (𝒌)�̄�𝑡𝛿∗𝜇 (𝒌)
𝑖𝜔𝑛 − 𝐸𝜇(𝒌)

�̄�𝑡𝛾𝜈 (𝒌 + 𝒒)𝛼𝑠𝛼∗𝜈 (𝒌 + 𝒒)
𝑖𝜔𝑛 − 𝑖𝜔 − 𝐸𝜈(𝒌 + 𝒒)

). (5.69)
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Figure 5.20. Knight shift given by the static magnetic susceptibility in the superconducting state for the field (a) in plane
and (b) out of plane. At high temperatures both the 𝐴1𝑔 and the 𝐸𝑔 state exhibit a linear dependence on temperature. The
𝐸𝑔 state shows a clear suppression of the Knight shift which qualitatively resembles a singlet response. The Yosida function
𝑌(𝑇) is shown in dashed lines for comparison.

This can be written more compactly using

𝜒SC𝑠𝑡 (𝒒, 𝑖𝜔) =
1
4
∑
𝛼𝛽𝛾𝛿
𝜎𝑎𝛼𝛽𝜎𝑏𝛾𝛿[𝜒SC(𝒒, 𝑖𝜔)]

𝑠𝛽,𝑡𝛾
𝑡𝛿,𝑠𝛼, (5.70)

with the generalized susceptibility

[𝜒SC(𝒒, 𝑖𝜔)]
𝑝,𝑞
𝑠,𝑡 = −
1
𝑁
∑
𝒌
(𝛼𝑞𝜇(𝒌)𝛼𝑠∗𝜇 (𝒌)𝛼𝑡𝜈(𝒌 + 𝒒)𝛼

𝑝∗
𝜈 (𝒌 + 𝒒)

− 𝛼𝑞𝜇(𝒌)�̄�𝑡∗𝜇 (𝒌)�̄�𝑠𝜈(𝒌 + 𝒒)𝛼
𝑝∗
𝜈 (𝒌 + 𝒒))

𝑓(𝐸𝜇(𝒌)) − 𝑓(𝐸𝜈(𝒌 + 𝒒))
𝑖𝜔 + 𝐸𝜇(𝒌) − 𝐸𝜈(𝒌 + 𝒒)

. (5.71)

The physical susceptibility is then derived from the generalized susceptibility as

𝜒SC,phys𝑎𝑏 (𝒒, 𝑖𝜔) =
1
4
∑
𝑠,𝑡
∑
𝛼𝛽𝛾𝛿
𝜎𝑎𝛼𝛽𝜎𝑏𝛾𝛿[𝜒SC(𝒒, 𝑖𝜔)]

𝑠𝛽,𝑡𝛾
𝑡𝛿,𝑠𝛼. (5.72)

In the linear response regime, the Knight shift for the field along the 𝛼 axis is defined by the real part of the
magnetic susceptibility at 𝒒 = 0 and in the static limit 𝑖𝜔 = 0 [209]

𝐾𝛼 = Re[𝜒SC,phys𝛼𝛼 (𝒒 = 0, 𝑖𝜔 = 0)]. (5.73)

In Fig. 5.20 we show the Knight shift for the external field in and out of the plane for the 𝐴1𝑔 and 𝐸𝑔 irreps.
The onset of both the Knight shift below 𝑇𝑐 is linear in 𝑇 for both states and a suppression of the Knight shift
for the 𝐸𝑔 state below 𝑇𝑐 is clearly present. This confirms that despite the microscopic spin-triplet structure of
the matrix pairing potential, both the 𝐴1𝑔 and the 𝐸𝑔 states manifest themselves as a pseudospin singlet with
the magnetic response of a true singlet. In particular the suppression for the in-plane fields is qualitatively in
accordance with [84, 85]. The anisotropy between in-plane and out-of-plane fields is likely due to the inclusion
of the momentum-dependent spin-orbit coupling terms in the normal-state Hamiltonian.
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At low temperature the response of the 𝐴1𝑔 and the 𝐸𝑔 states differ qualitatively. While the response of
the 𝐴1𝑔 state is reminiscent of the Yosida function with an additional offset at zero temperature, the response
of the 𝐸𝑔 state has an additional feature at very low temperatures. A possible explanation for this anomaly
is that the gap on the 𝛼 band in the 𝐸𝑔 state is much smaller than on the other bands. It was pointed out by
Agterberg et al. [235] that if the bands are weakly coupled, the very small gap on one band gives rise to essentially
gapless excitations for temperatures that are larger than this small gap. These excitations will appear as low
temperature anomalies in various thermodynamic and transport properties. For the 𝐸𝑔 state this effect might
be very pronounced in the present case, because the gap on the 𝛼 sheet of the Fermi surface is mostly vanishing,
cf. Fig. 5.17. One might argue that the situation is similar for the 𝐴1𝑔 where the gap is also much smaller on the
𝛼 sheet, however, the gap remains finite over the whole sheet which could explain why the effect is suppressed
for the 𝐴1𝑔 state.

5.7 Discussion

The pairing state that we have proposed is an orbital-antisymmetric spin-triplet state that results in a Knight
shift below 𝑇𝑐, breaks time-reversal symmetry, and produces a jump in the shear modulus 𝐶66 at 𝑇𝑐 which
is in qualitative agreement with the experiments [51, 52, 84, 85, 186–188]. However, it predicts a linear cusp
for the splitting of the phase transition under uniaxial strain which has not been observed [183, 184]. It also
has a horizontal line node at 𝑘𝑧 = 0, ±2𝜋/𝑐 and thermal conductivity [165], ultrasound attenuation [187], field-
angle-dependent heat capacity [239], and quasiparticle interference [168] seem to suggest vertical line nodes
along the Γ-M direction, but the situation is disputed and some experiments suggest horizontal line nodes
instead [166, 167]. The other problem is that the gap node at 𝑘𝑧 = 0 seems to imply that the pairing strength
approaches zero in the limit of very small interlayer coupling. We have worked around this by suggesting that
weak momentum-dependent spin-orbit couplings in the out-of-plane direction stabilize a purely local pairing
state with the same symmetry. The existence of these terms is hypothetical at this point and has not been widely
examined. Additionally the horizontal line nodes are inflated into Bogoliubov Fermi surfaces and may mimic
diagonal vertical line nodes.

The pairing state that we have proposed is a natural choice, because of the two-component nature of the
𝐸𝑔 irrep. Another possibility that has been recently proposed and has gained some attention is a state with
𝑑𝑥2−𝑦2 ± 𝑖𝑔𝑥𝑦(𝑥2−𝑦2) symmetry, because it is consistent with both broken time-reversal symmetry and the jump
in the 𝑐66 shear modulus and it might explain the absence of a linear cusp under uniaxial strain [188, 211, 240].
This pairing state would only have vertical line nodes and even though the location and direction of the line
nodes is disputed, the idea of vertical line nodes is generally more popular than horizontal line nodes [165, 168,
187, 239]. On the other hand, this state is a less natural choice because it mixes the 𝐵1𝑔 and the 𝐴2𝑔 irreducible
representations. Pairing states belonging to different irreps do not necessarily have the same critical temperature
so this state requires fine-tuning to explain why superconductivity and time-reversal symmetry breaking set
in at the same temperature [42]. Finally the 𝑔-wave form factor might seem improbable because of the very
long-range pairing that it implies, but it has been pointed out that nearest-neighbor Coulomb repulsion leads
to a competitive instability in this channel at weak-coupling [241].
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5.8 Summary

In this chapter we have discussed the possibility of even-parity chiral superconductivity in Sr2RuO4 [234]. This
material has long been the best candidate for odd-parity spin-triplet chiral 𝑝-wave superconductivity [82, 83].
This proposal became a well-established fact, but the recent revisiting of old Knight shift measurements is
inconsistent with this scenario [84, 85]. The spin-singlet response detected in the new measurements cannot
be unified with a chiral 𝑝-wave state and the community is now more amenable to considering an even-parity
pairing state. There is substantial evidence for a two-component order parameter from the onset of time-reversal
symmetry breaking [51, 52, 185] and a jump in the shear modulus 𝑐66 [186–188] at the critical temperature. A
chiral 𝑑-wave state with 𝐸𝑔 symmetry is naturally consistent with these observations, but has been dismissed
previously because of the quasi-two-dimensional electronic structure [157–161].

We fit DFT results from [160] to the most general tight-binding Hamiltonian for a three-orbital system
in the 𝐷4ℎ point group. Models of this type have been considered in the literature before [214–216], however,
symmetry-allowed momentum-dependent spin-orbit coupling terms have not been included so far. To stay
faithful to the shape of the Fermi surface, we parameterize our tight-binding model by fitting it to the DFT
band structure given in [160]. We assume on-site interactions of the Hubbard-Kanamori type [218, 219] for a
purely local pairing interaction. Following the established literature we assume that the interaction constants
are sufficiently renormalized such that Hund’s coupling can stabilize superconductivity [118, 224]. The chiral
𝑑-wave nature of the order parameter with 𝐸𝑔 symmetry is encoded in the orbital degree, where it is expressed
as an 𝑠-wave orbitally-antisymmetric spin-triplet state. We find that the orbitally non-trivial 𝐸𝑔 state becomes
energetically favorable once we take into account the symmetry-allowed momentum-dependent spin-orbit
coupling terms. These terms tune the ground state between order parameters of different symmetry already for
surprisingly small values. This is important because their smallness implies that the experimentally established
two-dimensionality of the Fermi surface remains intact.

Below the critical temperature we solve the gap equation by iteration to obtain the self-consistent gap
magnitude in the 𝐴1𝑔 and the 𝐸𝑔 state. An interesting fact about the 𝐸𝑔 state that we have proposed is that
because it combines even parity, time-reversal symmetry breaking, and interband pairing it naturally gives rise
to Bogoliubov Fermi surfaces [133, 140, 234]. Although they are expected to be small, these might have profound
implications on the low-energy structure of the quasiparticles and for thermodynamic observables [93, 140].
To be consistent with the experimental observations the superconducting state has to result in a suppression of
the Knight shift below the critical temperature which we verify for both the 𝐴1𝑔 and the 𝐸𝑔 state.
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Chapter 6

Conclusion

In this thesis we explore novel phenomena in multiband superconductors. The common theme of all chapters
is that orbitally non-trivial pairing can give rise to anomalous pairing states which have interesting properties.

In Chapter 3 we have presented the concept of Bogoliubov Fermi surfaces [133]. They generically appear in
centrosymmetric even-parity superconductors with multiple bands that break time-reversal symmetry. The
presence of orbitally non-trivial pairing channels implies that the gap product is non-unitary. A non-zero
time-reversal odd part of the non-unitary gap product is directly responsible for the appearance of Bogoliubov
Fermi surfaces, as can be understood within a low-energy effective theory. There the time-reversal odd part
gives rise to a pseudomagnetic field which lifts the pseudospin degeneracy and inflates point and line nodes into
extended Bogoliubov Fermi surfaces. The Bogoliubov Fermi surfaces are protected by aℤ2 topological invariant.
We have demonstrated the properties of the Bogoliubov Fermi surfaces on the example of the Luttinger-Kohn
Hamiltonian of 𝑗 = 3/2 fermions in the cubic crystal system. This model has served as a paradigmatic model
in the literature [66, 76, 77, 133, 135, 136].

The topological protection of the Bogoliubov Fermi surfaces alone does not guarantee their existence.
The inflation of the nodes increases the nodal area in momentum space and thus costs condensation energy,
which is expected to be detrimental for superconductivity [90]. Therefore, in Chapter 4 we investigate the
thermodynamic stability of a time-reversal symmetry-breaking pairing state with Bogoliubov Fermi surfaces
in contrast to one that preserves time-reversal symmetry [140]. Using BCS mean-field theory we compute
the phase diagram as a function of spin-orbit coupling and temperature. We find a rich phase diagram which
supports stable Bogoliubov Fermi surfaces. In the limit of vanishing spin-orbit coupling we confirm the
prediction by Ho and Yip [137] that a time-reversal symmetric pairing state is stable. For increasing spin-orbit
coupling, the multiband nature of the model gives rise to a first-order phase transition from the normal into
the superconducting state. This can be understood by the competition between intra- and interband pairing
which is controlled by cubic anisotropy. For moderate values of the spin-orbit coupling we find a time-reversal
symmetry-breaking state with Bogoliubov Fermi surfaces, which confirms the prediction from [66]. Close
to the time-reversal symmetric phase and at low temperatures this state is reentrant and shows a first-order
transition into the time-reversal symmetric state. Due to the lifting of the pseudospin degeneracy, the time-
reversal symmetry-breaking state exhibits a residual density of states around the Fermi energy as large as 20%
of the normal state. Furthermore, the superconductivity gives rise to a subdominant magnetic order parameter
which, however, is small even for large values of the residual density of states, which confirms the hypothesis that
time-reversal symmetry-breaking superconductors only have a weak intrinsic magnetisation [148]. These result
are encouraging for experimental searches of Bogoliubov Fermi surfaces. Heavy-fermion superconductors are a
promising platform and it is intriguing that a large residual density of states has been observed in URu2Si2 [141].

In Chapter 5 we turned our attention the unconventional superconductor Sr2RuO4 [82] which has recently
attracted a lot of attention. For several decades it was believed that this was a textbook example of an odd-parity
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chiral 𝑝-wave superconductor [83]. A recent repetition of early Knight shift experiments has cast serious doubt
on this paradigm and strongly suggests a spin-singlet pairing state [84, 85]. We propose an alternative pairing
state that is consistent with the updated experimental situation. We employ existing DFT results [160] and fit the
most general normal-state Hamiltonian for the tetragonal point group to obtain a quantitatively faithful model
of the Fermi surface. In contrast to existing work [214–216], we also include symmetry-allowed momentum-
dependent spin-orbit coupling terms. Starting from on-site interactions of the Hubbard-Kanamori type [219,
220] we derived all the possible even-parity Cooper pairs. By a similar reasoning as in [118] we argue that these
interactions can give rise to a weak-coupling instability. Solving the linearized gap equation, we are able to show
it is possible to tune the leading instability into an even-parity state with 𝐸𝑔 symmetry by varying spin-orbit
coupling parameters with a small range. This does not affect the experimentally observed two-dimensionality
of the Fermi surface. Because this pairing state has even-parity it acts as a pseudospin-singlet and gives rise to a
singlet response in the spin susceptibility. This purely local 𝐸𝑔 pairing state is orbitally non-trivial and because
it breaks time-reversal symmetry it is expected to host Bogoliubov Fermi surfaces.

Outlook

There are some obvious extensions to the work presented in this thesis. In Chapter 3 we have presented the
basic theory of Bogoliubov Fermi surfaces, which are surfaces of ungapped quasiparticles in momentum space.
One interesting question is to what extent these Bogoliubov Fermi surfaces behave like regular Fermi surfaces.
The main reason for this question is that the quasiparticles that make up the Bogoliubov Fermi surfaces have
no definite charge because they are superpositions of particle- and hole-like excitations, whereas the Fermi
surface of a regular metal always consists of regular charged particles. Hence it is interesting to investigate
whether Bogoliubov Fermi surfaces are able to exhibit quantum oscillations, which would also be a possible
step towards their observation. In previous work, strain has been used to simulate quantum oscillations in
nodal superconductors [242–244].

The work in Chapter 4 shows that Bogoliubov Fermi surfaces are stable in large parts of the parameter
space. Due to the lifting of the pseudospin degeneracy, they lead to a residual density of states at zero energy
and therefore also to a residual value at zero temperature in several thermodynamic observables. Since the size
of the Bogoliubov Fermi surfaces and therefore the magnitude of the residual values depends on the ratio of
the interband pairing potential to the band splitting, materials where this ratio is as large as possible are the
best candidates. Heavy-fermion superconductors satisfy these criteria and are therefore a promising platform.
A residual thermal conductivity at zero field and at low temperatures has been observed in the heavy-fermion
compound URu2Si2 [141]. Identifying a particular experimental platform for the Bogoliubov Fermi surfaces is
an important step and material-specific ab initio studies are necessary to make quantitative predictions.

Only very briefly we have touched upon the topic of “superconducting fitness” [113, 114]. The superconduct-
ing fitness is a concept similar to Anderson’s theorem to make statements concerning the stability of different
superconducting states. It introduces measures to identify terms in the normal-state Hamiltonian that are
beneficial or detrimental to a weak-coupling instability. Currently this concept is limited to determining the
critical temperature of the superconductor. In Chapter 4 and in Appendix D we have studied the time-reversal
symmetry-breaking phase transition in detail. A possible extension of superconducting fitness is to identify
terms in the normal-state Hamiltonian that are beneficial or detrimental to a time-reversal symmetry broken
state.

In Chapter 5 we have studied superconductivity a realistic three-dimensional model of the layered perovskite
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superconductor Sr2RuO4. As a simple model for the pairing mechanism we assumed purely local interaction of
the Hubbard-Kanamori type. This will inadvertently only give rise to local Cooper pairs and even-parity pairing.
Within this framework we have found that an orbitally-antisymmetric spin-triplet state in the 𝐸𝑔 irrep can be
stabilised. Spin fluctuations have usually been thought important for the pairing mechanism in Sr2RuO4 so it is
interesting to study how our prediction holds up in this scenario [205, 208, 245–248]. Studying pairing from spin
fluctuations within the random-phase approximation [209] is a good first step and can be complemented and
extended by other methodologies, such as the fluctuation-exchange approximation [249] or the weak-coupling
renormalization group [250, 251]. However, in contrast to previous work our full three-dimensional model of
the normal-state band structure has to be considered. In addition, our newly proposed pairing state calls for
the reevaluation of the theoretical predictions for the various experimental probes that are available.
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Appendix A

Character tables

In mathematics a group is the combination of a set 𝐺 with an operation ⋅, usually denoted by (𝐺, ⋅). The
operation between acts between any two elements of the set such that the result is also an element of that set,
i.e. the group is closed under the operation. Any group must satisfy the four group axioms:

Closure For all 𝑎, 𝑏 ∈ 𝐺 the result of 𝑎 ⋅ 𝑏 ∈ 𝐺.

Associativity For all 𝑎, 𝑏, 𝑐 ∈ 𝐺 it holds that 𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐.

Identity There is one element 𝑒 ∈ 𝐺 such that 𝑒 ⋅ 𝑔 = 𝑔 and 𝑔 ⋅ 𝑒 = 𝑔 for any 𝑔 ∈ 𝐺.

Inverse For each element 𝑔 ∈ 𝐺 there is an element 𝑔−1 ∈ 𝐺 such that 𝑔−1 ⋅ 𝑔 = 𝑔 ⋅ 𝑔−1 = 𝑒.

These group axioms are very abstract and apply independent of the representation of the group. The linear
representation𝐷 of a group is 𝐺 on a vector space 𝑉 is a group homomorphism

𝐷 ∶ 𝐺 → GL(𝑉), (A.1)

𝑔 ↦ 𝐷(𝑔), (A.2)

where GL(𝑉) is the general linear group over 𝑉 which is usually expressed as a set of invertible matrices.
A representation 𝐷 of the group 𝐺 is said to be reducible if there is an invariant subspace𝑊 ⊂ 𝑉 such

that𝐷(𝑔)𝑤 ∈ 𝑊 for all 𝑤 ∈ 𝑊 and all 𝑔 ∈ 𝐺. The representation is called reducible if a non-trivial invariant
subspace exists, otherwise it is called irreducible.

Two elements 𝑎, 𝑏 ∈ 𝐺 are said to be conjugate if there exists an element 𝑔 ∈ 𝐺 such that 𝑏 = 𝑔−1𝑎𝑔.
Conjugacy is an equivalence relation and therefore partition 𝐺 into equivalence classes called conjugacy classes.

In crystallography the point group is a group of symmetry operations which leave at least one point fixed.
Because the point groups have to leave the lattice invariant, we can restrict ourselves to finite point groups.
One such finite point group is the 𝐷4ℎ tetragonal point group. The group contains the following symmetry
operations

𝐷4ℎ = {𝐸, 2𝐶4, 𝐶2, 2𝐶′2 , 2𝐶″2 , 𝐼, 2𝑆4, 𝜎ℎ, 2𝜎𝑣, 2𝜎𝑑}, (A.3)

where 𝐸 is the identity, 2𝐶4 are clockwise and counterclockwise four-fold rotations around the 𝑧 axis (principal
axis), 𝐶2 is a two-fold rotations around are the 𝑧 axis, 2𝐶′2 are two-fold rotations around the 𝑥 and 𝑦 axis, 2𝐶″2
are two-fold rotations around the axes 𝑥 = 𝑦 and 𝑥 = −𝑦, 𝐼 is inversion, 2𝑆4 are rotoinversions which are
combinations of 2𝐶4 and 𝐼, 𝜎ℎ is reflection at the 𝑧 = 0 plane, 2𝜎𝑣 are reflections at the 𝑥 = 0 and 𝑦 = 0 planes,
and 2𝜎𝑑 are reflections at the (𝑥 − 𝑦) = 0 and (𝑥 + 𝑦) = 0 planes.

We can express each symmetry operation as a matrix which represents how vectors or functions that were
chosen as a basis set transform under the action of the symmetry operations. The form of these matrices
depends on the choice of the basis, however, the trace of the matrix is independent of the basis and is referred

111



A | character tables

irrep 𝑒 𝐼 𝐶4 𝐶2 𝐶′2 𝐶″2 𝑆4 𝜎ℎ 𝜎𝑣 𝜎𝑑
𝐴1𝑔 1 1 1 1 1 1 1 1 1 1
𝐴2𝑔 1 1 1 1 −1 −1 1 1 −1 −1
𝐵1𝑔 1 1 −1 1 1 −1 −1 1 1 −1
𝐵2𝑔 1 1 −1 1 −1 1 −1 1 −1 1
𝐸𝑔 2 2 0 −2 0 0 0 −2 0 0

𝐴1𝑢 1 −1 1 1 1 1 −1 −1 −1 −1
𝐴2𝑢 1 −1 1 1 −1 −1 −1 −1 1 1
𝐵1𝑢 1 −1 −1 1 1 −1 1 −1 −1 1
𝐵2𝑢 1 −1 −1 1 −1 1 1 −1 1 −1
𝐸𝑢 2 −2 0 −2 0 0 0 2 0 0

Table A.1. Character table for𝐷4ℎ.

irrep Rot 𝑑 𝑔

𝐴1𝑔 𝑧2 (𝑥2 − 𝑦2)2 − 4𝑥2𝑦2, 𝑧4

𝐴2𝑔 𝑅𝑧 𝑥𝑦(𝑥2 − 𝑦2)
𝐵1𝑔 𝑥2 − 𝑦2 𝑧2(𝑥2 − 𝑦2)
𝐵2𝑔 𝑥𝑦 𝑥𝑦𝑧2

𝐸𝑔 {𝑅𝑥, 𝑅𝑦} {𝑥𝑧, 𝑦𝑧} {𝑥𝑧(𝑥2 − 3𝑦2), 𝑦𝑧(3𝑥2 − 𝑦2)}, {𝑥𝑧3, 𝑦𝑧3}

𝑝 𝑓

𝐴1𝑢
𝐴2𝑢 𝑧 𝑧3
𝐵1𝑢 𝑥𝑦𝑧
𝐵2𝑢 𝑧(𝑥2 − 𝑦2)
𝐸𝑢 {𝑥, 𝑦} {𝑥(𝑥2 − 3𝑦2), 𝑦(3𝑥2 − 𝑦2)}, {𝑥𝑧2, 𝑦𝑧2}

Table A.2. Symmetry of rotations and Cartesian products for the point group𝐷4ℎ.

to as the character of the symmetry operation. An interesting property is that all elements of a conjugacy
class have the same character. This allows to write these characters as a table where the rows are irreducible
representations and the columns are the characters of the conjugacy classes of the group elements. For the
point group𝐷4ℎ we give this so called character table in Tab. A.1.

Thenormal-stateHamiltonian of the electrons in a crystal is invariant under the operations of the point group.
Therefore it is possible to write it as a linear combination of basis states which belong to different irreducible
representations. These basis states are usually either rotations or spherical harmonics. Their character under the
symmetry operations classifies them according to the irreducible representations. The symmetries of rotations
and real spherical harmonics (also called Cartesian products) for the𝐷4ℎ point group are listed in Tab. A.2.

In practice, for the one-dimensional irreducible representations the character indicates a sign change
under the corresponding symmetry operation. For example chose the lowest-order polynomial of the 𝐵1𝑔
representation from Tab. A.2 and apply the 𝐶4 operation. The effect of 𝐶4 it to let 𝑥 → 𝑦 and 𝑦 → −𝑥, which
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𝐴1𝑔 𝐴2𝑔 𝐵1𝑔 𝐵2𝑔 𝐸𝑔 𝐴1𝑢 𝐴2𝑢 𝐵1𝑢 𝐵2𝑢 𝐸𝑢
𝐴1𝑔 𝐴1𝑔 𝐴2𝑔 𝐵1𝑔 𝐵2𝑔 𝐸𝑔 𝐴1𝑢 𝐴2𝑢 𝐵1𝑢 𝐵2𝑢 𝐸𝑢
𝐴2𝑔 𝐴2𝑔 𝐴1𝑔 𝐵2𝑔 𝐵1𝑔 𝐸𝑔 𝐴2𝑢 𝐴1𝑢 𝐵2𝑢 𝐵1𝑢 𝐸𝑢
𝐵1𝑔 𝐵1𝑔 𝐵2𝑔 𝐴1𝑔 𝐴2𝑔 𝐸𝑔 𝐵1𝑢 𝐵2𝑢 𝐴1𝑢 𝐴2𝑢 𝐸𝑢
𝐵2𝑔 𝐵2𝑔 𝐵1𝑔 𝐴2𝑔 𝐴1𝑔 𝐸𝑔 𝐵2𝑢 𝐵1𝑢 𝐴2𝑢 𝐴1𝑢 𝐸𝑢
𝐸𝑔 𝐸𝑔 𝐸𝑔 𝐸𝑔 𝐸𝑔 𝐴1𝑔 ⊕[𝐴2𝑔]⊕𝐵1𝑔 ⊕𝐵2𝑔 𝐸𝑢 𝐸𝑢 𝐸𝑢 𝐸𝑢 𝐴1𝑢 ⊕𝐴2𝑢 ⊕𝐵1𝑢 ⊕𝐵2𝑢
𝐴1𝑢 𝐴1𝑢 𝐴2𝑢 𝐵1𝑢 𝐵2𝑢 𝐸𝑢 𝐴1𝑔 𝐴2𝑔 𝐵1𝑔 𝐵2𝑔 𝐸𝑔
𝐴2𝑢 𝐴2𝑢 𝐴1𝑢 𝐵2𝑢 𝐵1𝑢 𝐸𝑢 𝐴2𝑔 𝐴1𝑔 𝐵2𝑔 𝐵1𝑔 𝐸𝑔
𝐵1𝑢 𝐵1𝑢 𝐵2𝑢 𝐴1𝑢 𝐴2𝑢 𝐸𝑢 𝐵1𝑔 𝐵2𝑔 𝐴1𝑔 𝐴2𝑔 𝐸𝑔
𝐵2𝑢 𝐵2𝑢 𝐵1𝑢 𝐴2𝑢 𝐴1𝑢 𝐸𝑢 𝐵2𝑔 𝐵1𝑔 𝐴2𝑔 𝐴1𝑔 𝐸𝑔
𝐸𝑢 𝐸𝑢 𝐸𝑢 𝐸𝑢 𝐸𝑢 𝐴1𝑢 ⊕𝐴2𝑢 ⊕𝐵1𝑢 ⊕𝐵2𝑢 𝐸𝑔 𝐸𝑔 𝐸𝑔 𝐸𝑔 𝐴1𝑔 ⊕[𝐴2𝑔]⊕𝐵1𝑔 ⊕𝐵2𝑔

Table A.3. Product table for the𝐷4ℎ point group between the irreps of odd and even parity. In the products of two identical
degenerate representations, those terms antisymmetric with respect to particle permutation are indicated by square brackets.

implies
𝐶4(𝑥2 − 𝑦2) = (𝑦)2 − (−𝑥)2 = −(𝑥2 − 𝑦2), (A.4)

which is consistent with the character −1 in Tab. A.1.
For the two-dimensional irreducible representations the character indicates the trace of the matrix the corre-

sponds to the symmetry operations. For example chose the lowest-order polynomials of the 𝐸𝑢 representation
from Tab. A.2 and again apply the 𝐶4 operation

𝐶4 (
𝑥
𝑦
) = (
𝑦
−𝑥
) = (
0 1
−1 0
)(
𝑥
𝑦
) . (A.5)

The trace of this matrix is zero which is consistent with the character in Tab. A.1.
In multi-orbital systems it happens that we have to form the direct product of the orbital and spin Hilbert

spaces. The orbital and spin degrees of freedom may transform differently under the symmetry operations
of the point group. To find the irreducible representation of the resulting direct product we have to form the
group product. The products are tabulated in product table as for the𝐷4ℎ point group in Tab. A.3.
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Appendix B

Angular momentum

A good understanding of the quantum mechanical angular momentum is very important in solid state physics.
In a solid, the electrons are tightly bound to the atomic cores in their respective atomic orbitals. The atomic
orbitals are described by the principal quantum number 𝑛, the orbital angular momentum quantum number 𝑙,
and the magnetic quantum number 𝑚. Generally, we are only interested in the effects of itinerant electrons
in the solid, so only the valence shell electrons of the atoms really count. These all have the same quantum
numbers 𝑛 and 𝑙. In this appendix we will briefly review how the point group operations act on the orbital
angular momentum and how orbital and spin angular momentum interact.

B.1 Point group operations for angular momentum

Defining the quantization axis along the 𝑧 direction, the 𝑧 component of the angular momentum operator is
defined as

𝐿𝑧|𝑙, 𝑚⟩ = ℏ𝑚|𝑙, 𝑚⟩, (B.1)

with angular momentum eigenstates |𝑙, 𝑚⟩ with orbital angular momentum quantum number 𝑙 and magnetic
quantum number𝑚. By a simple counting argument, the ladder operators for the angular momentum states
can be derived as

𝐿±|𝑙, 𝑚⟩ = ℏ√𝑙(𝑙 + 1) − 𝑚(𝑚 ± 1)|𝑙, 𝑚 ± 1⟩. (B.2)

The commutation relations imply for the remaining components that

𝐿𝑥 =
1
2
(𝐿+ + 𝐿−), (B.3)

𝐿𝑦 =
1
2𝑖
(𝐿+ − 𝐿−). (B.4)

Equipped with these definitions we can easily derive the functional form of the angular momentum op-
erator for 𝑙 = 2. This corresponds to the 𝑑 orbitals which we use often throughout this thesis. In the basis
(|2, 2⟩, |2, 1⟩, |2, 0⟩, |2, −1⟩, |2, −2⟩)𝑇 the matrix form of these operators is

𝐿𝑥 = ℏ
(((

(

0 1 0 0 0

1 0 √ 32 0 0

0 √ 32 0 √
3
2 0

0 0 √ 32 0 1
0 0 0 1 0

)))

)

, (B.5)
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𝐿𝑦 = ℏ
(((

(

0 −𝑖 0 0 0

𝑖 0 −𝑖√ 32 0 0

0 𝑖√ 32 0 −𝑖√ 32 0

0 0 𝑖√ 32 0 −𝑖
0 0 0 𝑖 0

)))

)

, (B.6)

𝐿𝑧 = ℏ(

(

2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

)

)

. (B.7)

Now we are interested in deriving the form of the point group operations for the 𝑙 = 2 orbitals. We choose
the𝐷4ℎ tetragonal point group, again because we use it often throughout this thesis. The group contains the
following symmetry operations

𝐷4ℎ = {𝐸, 2𝐶4, 𝐶2, 2𝐶′2 , 2𝐶″2 , 𝐼, 2𝑆4, 𝜎ℎ, 2𝜎𝑣, 2𝜎𝑑}, (B.8)

where 𝐸 is the identity, 2𝐶4 are clockwise and counterclockwise four-fold rotations around the 𝑧 axis (principal
axis), 𝐶2 is a two-fold rotations around are the 𝑧 axis, 2𝐶′2 are two-fold rotations around the 𝑥 and 𝑦 axis, 2𝐶″2
are two-fold rotations around the axes 𝑥 = 𝑦 and 𝑥 = −𝑦, 𝐼 is inversion, 2𝑆4 are rotoinversions which are
combinations of 2𝐶4 and 𝐼, 𝜎ℎ is reflection at the 𝑧 = 0 plane, 2𝜎𝑣 are reflections at the 𝑥 = 0 and 𝑦 = 0 planes,
and 2𝜎𝑑 are reflections at the (𝑥 − 𝑦) = 0 and (𝑥 + 𝑦) = 0 planes.

The identity 𝐸 and inversion 𝐼 are trivial and we neglect the rotoinversion 𝑆4 for brevity. As a reminder, the
rotation operator of an angular momentum 𝑳 around an axis parallel to 𝒏 by an angle 𝜙 is given by

𝐷𝒏(𝜙) = exp(−𝑖
𝜙
ℏ
𝒏 ⋅ 𝑳). (B.9)

This implies for the rotations

𝐶4 = exp(−𝑖
𝜋
2
𝐿𝑧), (B.10)

𝐶′2(𝑥) = exp(−𝑖𝜋𝐿𝑥), (B.11)

𝐶″2 (𝑥 = 𝑦) = exp(−𝑖
𝜋
√2
(𝐿𝑥 + 𝐿𝑦)). (B.12)

The reflection operation can also be cast into the form of a rotation. In fact, reflection at a plane with normal
vector 𝒏 is equivalent to rotation by 𝜋 around the axis parallel to 𝒏. Hence, we find for the reflection operators

𝜎ℎ = exp(−𝑖𝜋𝐿𝑧), (B.13)

𝜎𝑣(𝑥) = exp(−𝑖𝜋𝐿𝑦), (B.14)

𝜎𝑑(𝑥 = 𝑦) = exp(−𝑖
𝜋
√2
(𝐿𝑥 − 𝐿𝑦)). (B.15)

The position space representation of the 𝑙 = 2 spherical harmonics is complex, but the probability density
of atomic orbitals shall be real. Therefore, to find the correspondence of the 𝑙 = 2 spherical harmonics with the
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𝑑 orbitals, we recombine them into the real spherical harmonics

|𝑑3𝑧2−𝑟2⟩ = |2, 0⟩, (B.16)

|𝑑𝑥2−𝑦2⟩ =
1
√2
(|2, −2⟩ + |2, 2⟩), (B.17)

|𝑑𝑦𝑧⟩ =
𝑖
√2
(|2, −1⟩ + |2, 1⟩), (B.18)

|𝑑𝑥𝑧⟩ =
1
√2
(|2, −1⟩ − |2, 1⟩), (B.19)

|𝑑𝑥𝑦⟩ =
𝑖
√2
(|2, −2⟩ − |2, 2⟩). (B.20)

In this thesis we are only interested in a submanifold of these real spherical harmonics, which is why we
project the symmetry operations derived above into the subspace spanned by 𝑑𝑦𝑧, 𝑑𝑥𝑧, and 𝑑𝑥𝑦. The matrix
elements of the symmetry operation 𝑂 are then given by 𝑂𝑎𝑏 = ⟨𝑑𝑎|𝑂|𝑑𝑏⟩ with 𝑎, 𝑏 ∈ {𝑦𝑧, 𝑥𝑧, 𝑥𝑦}. In the basis
(|𝑑𝑦𝑧⟩, |𝑑𝑥𝑧⟩, |𝑑𝑥𝑦⟩)𝑇 the matrix form of the symmetry operations is

𝐶4 = (
0 1 0
−1 0 0
0 0 −1

) , 𝐶′2(𝑥) = (
1 0 0
0 −1 0
0 0 −1

) , 𝐶″2 (𝑥 = 𝑦) = (
0 −1 0
−1 0 0
0 0 1

) , (B.21)

𝜎ℎ = (
−1 0 0
0 −1 0
0 0 1

) , 𝜎𝑣(𝑥) = (
−1 0 0
0 1 0
0 0 −1

) , 𝜎𝑑(𝑥 = 𝑦) = (
0 1 0
1 0 0
0 0 1

) , (B.22)

and for reference, in the even more restricted basis of (|𝑑𝑦𝑧⟩, |𝑑𝑥𝑧⟩)𝑇 we have

𝐶4 = (
0 1
−1 0
) , 𝐶′2(𝑥) = (

1 0
0 −1
) , 𝐶″2 (𝑥 = 𝑦) = (

0 −1
−1 0
) , (B.23)

𝜎ℎ = (
−1 0
0 −1
) , 𝜎𝑣(𝑥) = (

−1 0
0 1
) , 𝜎𝑑(𝑥 = 𝑦) = (

0 1
1 0
) . (B.24)

B.2 Angular momentum coupling

We want to briefly investigate how the coupling between 𝑙 = 1 orbital angular momentum and 𝑠 = 1/2 spin
angular momentum gives rise to 𝑗 = 3/2 states. For the angular momenta 𝑙 = 1 and 𝑠 = 1/2 we have the
following states

|𝑙, 𝑚𝑙⟩ =
{{{{
{{{{
{

|1, 1⟩,

|1, 0⟩,

|1, −1⟩,

|𝑠, 𝑚𝑠⟩ =
{{
{{
{

|1
2
, 1
2
⟩ ,

|1
2
, −1
2
⟩ .

(B.25)

The total angular momentum 𝑗 takes on the values 𝑗 = 𝑙 + 𝑠,… , |𝑙 − 𝑠|, i.e. 𝑗 = 3/2, 1/2. This implies the
following six states in the new basis of the total angular momentum

|𝑗, 𝑚𝑗⟩ = {|
3
2
, 3
2
⟩ , |3
2
, 1
2
⟩ , |3
2
, −1
2
⟩ , |3
2
, −3
2
⟩ , |1
2
, 1
2
⟩ , |1
2
, −1
2
⟩ . (B.26)
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Because it holds that 𝑚𝑗 = 𝑚𝑠 + 𝑚𝑙, we can immediately relate the state |3/2, 3/2⟩ to the one in the basis of 𝑙
and 𝑠

|3
2
, 3
2
⟩ = |1, 1
2
⟩ (B.27)

Then we apply 𝐽− = 𝐿− + 𝑆− on this state to find the remaining ones with 𝑗 = 3/2. In the following we write the
states in the form |𝑗, 𝑚𝑗⟩ on the left-hand side and in the form |𝑚𝑙, 𝑚𝑠⟩ on the right-hand side. As an example,
to find |3/2, 1/2⟩ we apply 𝐽− to |3/2, 3/2⟩

𝐽− |
3
2
, 3
2
⟩ = (𝐿− + 𝑆−) |1,

1
2
⟩

ℏ√3 |3
2
, 1
2
⟩ = ℏ√2 |0, 1

2
⟩ + ℏ |1, −1

2
⟩

|3
2
, 1
2
⟩ = √2
3
|0, 1
2
⟩ + √1
3
|1, −1
2
⟩ . (B.28)

(B.29)

Similarly, we proceed down the chain to find the two other states

| 3
2
, 1
2
⟩ = √2
3
|0, −1
2
⟩ + √1
3
|−1, 1
2
⟩ . (B.30)

| 3
2
, −3
2
⟩ = |−1, −1

2
⟩ (B.31)

For the states with quantum number 𝑗 = 1/2 we use the fact that states have to orthonormal in quantum
mechanics. To obtain the quantum number𝑚𝑗 = 1/2we have to combine either 𝑙 = 0, 𝑠 = 1/2 or 𝑙 = 1, 𝑠 = −1/2,
so we choose the ansatz

| 1
2
, 1
2
⟩ = 𝑐1 |1, −

1
2
⟩ + 𝑐2 |0,

1
2
⟩ . (B.32)

From the normalization condition we obtain

⟨1
2
, 1
2
| 1
2
, 1
2
⟩ = 1 = |𝑐1|2 + |𝑐2|2

⟹ |𝑐1|2 = 1 − |𝑐2|2, (B.33)

and from the orthogonality requirement we obtain a second condition for the coefficients

⟨3
2
, 1
2
| 1
2
, 1
2
⟩ = 0 = 𝑐1√

1
3
+ 𝑐2√
2
3
. (B.34)

Solving this system of equations is easy and under consideration of the established phase conventions [252] we
find

| 1
2
, 1
2
⟩ = √2
3
|1, −1
2
⟩ − √1
3
|0, 1
2
⟩ |0, 1/2⟩. (B.35)

Then again, applying the 𝐽− operator to find the |1/2, −1/2⟩ state as

| 1
2
, −1
2
⟩ = √1
3
|0, −1
2
⟩ − √2
3
|−1, 1
2
⟩ . (B.36)

118



angular momentum | B

In summary we have

| 3
2
, 3
2
⟩ = |1, 1
2
⟩ , (B.37)

| 3
2
, 1
2
⟩ = √2
3
|0, 1
2
⟩ + √1
3
|1, −1
2
⟩ , (B.38)

| 3
2
, 1
2
⟩ = √2
3
|0, −1
2
⟩ + √1
3
|−1, 1
2
⟩ , (B.39)

| 3
2
, −3
2
⟩ = |−1, −1

2
⟩ , (B.40)

| 1
2
, 1
2
⟩ = √2
3
|1, −1
2
⟩ − √1
3
|0, 1
2
⟩ , (B.41)

| 1
2
, −1
2
⟩ = √1
3
|0, −1
2
⟩ − √2
3
|−1, 1
2
⟩ . (B.42)
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Appendix C

Path integrals

A central quantity in the description of superconductors is the free energy. From this all the thermodynamic
properties can be derived. Moreover, in the weak-coupling theory the pairing state that is most stable is the one
that minimizes the free energy. Therefore, it plays a major role in the selection of the pairing symmetry. The
free energy is derived from the partition function of a quantum system which can conveniently be described as
a path integral [253].

C.1 Path integral for free fermions

The propagator of the Schrödinger equation between a initial state |𝑖⟩ and a final state |𝑓⟩ is described by an
integral over all paths connecting 𝒓𝑖 at time 𝑡𝑖 to 𝒓𝑓 at time 𝑡𝑓, which is given as the path integral

⟨𝑓|𝑒−𝑖𝐻𝑡/ℏ|𝑖⟩ = 𝐾(𝒓𝑓, 𝑡; 𝒓𝑖, 0) = ∫D[𝒓] 𝑒𝑖𝑆[𝒓]/ℏ (C.1)

where we introduce the action

𝑆[𝒓] = ∫
𝑡

0
𝑑𝑡′ L(𝒓, ̇𝒓, 𝑡′) = ∫

𝑡

0
𝑑𝑡′[𝒑 ̇𝒓 − 𝐻(𝒓, 𝒑, 𝑡′)] (C.2)

with conjugate variables 𝒑 and 𝒒 and the Lagrangian L(𝒓, ̇𝒓, 𝑡) which is related to the Hamiltonian by Legendre
transformation. The canonical partition function is defined as the sumof the Boltzmann factors of allmicrostates
𝜆 which is usually written as a trace and can be related to the propagator with an imaginary time

𝑍 = Tr[𝑒−𝛽𝐻] = ∑
𝜆
⟨𝜆|𝑒−𝛽𝐻|𝜆⟩ = 𝐾(𝑡𝑓 = −𝑖𝛽ℏ; 𝑡𝑖 = 0). (C.3)

This transformation of the statistical average into a path integral over periodic paths in imaginary time is also
known as a Wick rotation. Hence we can write the partition function as a path integral in terms of conjugate
variables with imaginary time 𝜏 = 𝑖𝑡/ℏ

𝑍 = ∮D[𝒓] exp(−𝑆𝐸) = ∮D[𝒓] exp[−∫
𝛽

0
𝑑𝜏 (− 𝑖
ℏ
𝒑𝜕𝜏𝒓 + 𝐻(𝒓, 𝒑, 𝑡′))]. (C.4)

In canonical quantization we replace the conjugate variables by conjugate quantum fields 𝒓 → 𝜙 and 𝒑 → 𝑖ℏ ̄𝜙
where 𝜙 is the complex conjugate of ̄𝜙. The partition function and the action then take the form

𝑍 = ∫D[ ̄𝜙, 𝜙] exp[−𝑆𝐸]

𝑆𝐸 = ∫
𝛽

0
𝑑𝜏 ( ̄𝜙𝜕𝜏𝜙 + 𝐻[ ̄𝜙, 𝜙])

(C.5)
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with the measure
D[ ̄𝜙, 𝜙] ≡ ∏

𝜏
𝑑 ̄𝜙(𝜏) 𝑑𝜙(𝜏). (C.6)

The free energy can be derived from the partition function by taking the logarithm

𝐹 = − 1
𝛽
ln𝑍. (C.7)

The path integral and therefore the partition function and all derived quantities can not only be evaluated
for single-particle problems but also in many-body systems. Here we will evaluate it for free fermions to
show the generic mechanics of this approach and also because we will use this result later in the context of
symmetry-broken phases. The Hamiltonian for free fermions is given in momentum space as

𝐻 = ∑
𝒌
𝜖𝒌𝑐
†
𝒌𝑐𝒌. (C.8)

Before attempting the more complicated approach of path integrals we briefly recapitulate what result for
the partition function the free energy we expect. The partition function can be determined by summing the
Boltzmann factors of all microstates which can be expressed as a trace

𝑍 = Tr[𝑒−𝛽𝐻] = Tr[exp(−𝛽∑
𝒌
𝜖𝒌𝑐
†
𝒌𝑐𝒌)]. (C.9)

We carry out the trace in the eigenbasis of the Hamiltonian, where the eigenvalues of the number operator 𝑐†𝒌𝑐𝒌
are simply the occupation numbers 𝑛𝒌.

𝑍 = Tr[∏
𝒌
exp(−𝛽𝜖𝒌𝑛𝒌)]. (C.10)

Since we are dealing with fermions, there are only two possible occupations, 𝑛𝒌 = 0 and 𝑛𝒌 = 1, so the trace
evaluates to

𝑍 = ∏
𝒌
[1 + exp(−𝛽𝜖𝒌)], (C.11)

and we get the free energy by taking the logarithm

𝐹 = − 1
𝛽
∑
𝒌
ln[1 + exp(−𝛽𝜖𝒌)]. (C.12)

For the path integral formulation we first construct the action by inserting the Lagrangian that we derive
straight-forwardly from the Hamiltonian. The resulting action in imaginary time takes the simple form

𝑆𝐸 = ∫
𝛽

0
𝑑𝜏 [∑
𝒌
̄𝑐𝒌𝜕𝜏𝑐𝒌 + 𝐻[ ̄𝑐, 𝑐]] = ∫

𝛽

0
𝑑𝜏 [∑
𝒌
̄𝑐𝒌(𝜕𝜏 + 𝜖𝒌)𝑐𝒌]. (C.13)

Because the propagator is periodic in imaginary time it makes sense to transform the integral over imaginary
time to frequency space. The transformation is conventionally chosen as

𝑐 = 1
√𝛽
∑
𝑖𝜔𝑛

𝑐𝑛𝑒−𝑖𝜔𝑛𝜏, (C.14)

with the fermionic Matsubara frequencies 𝜔𝑛 = (2𝑛 + 1)𝜋/𝛽. Expressed in terms of a sum over frequencies, the
action reads

𝑆𝐸 = ∑
𝒌,𝑖𝜔𝑛

̄𝑐𝒌𝑛(−𝑖𝜔𝑛 + 𝜖𝒌)𝑐𝒌𝑛. (C.15)
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To formulate the partition function we plug in the action and the measure

𝑍 = ∫ ∏
𝒌,𝑖𝜔𝑛

𝑑 ̄𝑐𝒌𝑛 𝑑𝑐𝒌𝑛 exp[− ∑
𝒌,𝑖𝜔𝑛

̄𝑐𝒌𝑛(−𝑖𝜔𝑛 + 𝜖𝒌)𝑐𝒌𝑛]. (C.16)

Because the action is quadratic in fields, this integral resembles a Gaussian integral in higher dimensions. In
fact, the following holds

∫𝑑 ̄𝜙 𝑑𝜙 𝑒−𝑎 ̄𝜙𝜙 = 𝑎
multiple variables
⟹ ∫∏

𝑗
𝑑 ̄𝜙𝑗 𝑑𝜙𝑗 𝑒

−∑𝑗 𝑎𝑗 ̄𝜙𝑗𝜙𝑗 = ∏
𝑗
𝑎𝑗. (C.17)

Hence the path integral can be evaluated directly and we find for the partition function in frequency space

𝑍 = ∏
𝒌,𝑖𝜔𝑛

(−𝑖𝜔𝑛 + 𝜖𝒌). (C.18)

Again the free energy is derived from the partition function by taking the logarithm. The logarithm of a product
can be written as a sum of logarithms and we have

𝐹 = − 1
𝛽
∑
𝒌,𝑖𝜔𝑛

ln(−𝑖𝜔𝑛 + 𝜖𝒌). (C.19)

The trick to evaluate the sum over Matsubara frequencies is to rewrite it as a contour integral with the Fermi-
Dirac distribution function 𝑓(𝑧) = (1 + 𝑒−𝛽𝑧)−1 which has simple poles at the Matsubara frequencies 𝑧 = 𝑖𝜔𝑛

1
𝛽
∑
𝑖𝜔𝑛

𝑔(𝑖𝜔𝑛) =
1
2𝜋𝑖
∮
Γ
𝑓(𝑧)𝑔(𝑧) 𝑑𝑧. (C.20)

The contour integral will pick up these residues which is equivalent to a summation per the residue theorem.
Because in our case 𝑔(𝑧) has a branch cut along the real axis we have to decompose the integral, as illustrated
in Fig. C.1

∮
Γ
𝑓(𝑧) ln(𝜖𝒌 − 𝑧) 𝑑𝑧 = ∮

𝛾
𝑓(𝑧) ln(𝜖𝒌 − 𝑧) 𝑑𝑧

+ lim
𝛿→0
(∫
∞

𝜖𝒌
𝑓(𝑧) ln(𝜖𝒌 − (𝑧 + 𝑖𝛿)) 𝑑𝑧 + ∫

𝜖𝒌

∞
𝑓(𝑧) ln(𝜖𝒌 − (𝑧 − 𝑖𝛿)) 𝑑𝑧). (C.21)

By Cauchy’s theorem the integral over 𝛾 vanishes. Swapping the limits in the second integral, it is possible to
combine the remaining terms

∮
Γ
𝑓(𝑧) ln(𝜖𝒌 − 𝑧) 𝑑𝑧 = lim𝛿→0∫

∞

𝜖𝒌
[𝑓(𝑧) ln(𝜖𝒌 − (𝑧 + 𝑖𝛿)) − 𝑓(𝑧) ln(𝜖𝒌 − (𝑧 − 𝑖𝛿))] 𝑑𝑧. (C.22)

As we let 𝛿 → 0, the logarithm picks up a phase difference of 2𝜋 across the branch cut

∮
Γ
𝑓(𝑧) ln(𝜖𝒌 − 𝑧) 𝑑𝑧 = ∫

∞

𝜖𝒌
{𝑓(𝑧)[ln(𝜖𝒌 − 𝑧) + 2𝜋𝑖] − 𝑓(𝑧) ln(𝜖𝒌 − 𝑧)} 𝑑𝑧 = 2𝜋𝑖 ∫

∞

𝜖𝒌
𝑓(𝑧) 𝑑𝑧. (C.23)

Thus the Matsubara sum has been transformed into to a simple one-dimensional integral and the free energy
becomes

𝐹 = −∑
𝒌
∫
∞

𝜖𝒌
𝑓(𝑧) 𝑑𝑧 = −∑

𝒌
∫
∞

𝜖𝒌

1
1 + 𝑒𝛽𝑧
𝑑𝑧. (C.24)

After straightforward substitution (𝑢 = 1 + 𝑒𝛽𝑧) we find

𝐹 = −∑
𝒌
[− 1
𝛽
ln(1 + 𝑒−𝛽𝑧)]

∞

𝜖𝒌
= − 1
𝛽
∑
𝒌
ln(1 + 𝑒−𝛽𝜖𝒌 ). (C.25)

This is the same as (C.12).
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Re 𝑧

Im 𝑧

𝜖𝒌

𝛾

+𝛿

−𝛿

Figure C.1. Transformation of a Matsubara frequency sum into a contour integral. The blue crosses along the imaginary
axis are the simple poles of the Fermi-Dirac distribution function which correspond to the fermionic Matsubara frequencies.
In the case of free fermions, there is a branch cut along the positive real axis emanating from 𝜖𝒌. The contour 𝛾 thus has to
be deformed to exclude this branch cut as illustrated.

C.2 Path integral formulation of the free energy

As mentioned earlier, at weak coupling that superconducting state that is selected below the critical temperature
𝑇𝑐 is the one that minimizes the mean-field free energy. In the following we will derive expressions for the
mean-field free energy using the path integral formalism. The derivation closely follows and extends [253].

We start from a general interaction

𝐻int = − ∑
𝒌,𝒌′,𝑎
𝐴†𝒌,𝑎𝑉𝒌,𝒌′;𝑎𝐴𝒌′,𝑎, (C.26)

with the Grassmann variables for the fermion bilinears 𝐴𝒌,𝑎 = 𝑐−𝒌𝛾𝑎𝑐𝒌 and basis matrices 𝛾𝑎 which encode the
electronic degrees of freedom such as spin and orbital. The partition function is defined as the path integral

𝑍 = ∫D[𝑐†, 𝑐] exp[−∫
𝛽

0
𝑑𝜏(𝑐†𝜕𝜏𝑐 + 𝐻[𝑐†, 𝑐])] = ∫D[𝑐†, 𝑐] exp(−𝑆[𝑐†, 𝑐]), (C.27)

with the action
𝑆 = ∫
𝛽

0
𝑑𝜏[∑
𝒌
𝑐†𝒌(𝜕𝜏 + ⃗𝜖𝒌 ⋅ ⃗𝛾)𝑐𝒌 − ∑

𝒌,𝒌′,𝑎
𝐴†𝒌,𝑎𝑉𝒌,𝒌′;𝑎𝐴𝒌′,𝑎]. (C.28)

where ⃗𝜖𝒌 ⋅ 𝛾 denotes the free electron Hamiltonian expanded in terms of the basis matrices 𝛾𝑎. We will now
perform the Hubbard-Stratonovich decomposition of the interaction term. Therefore we introduce a fluctuating
field 𝛼.

𝑍𝛼 = ∫D[𝛼†, 𝛼] exp[−∫
𝛽

0
𝑑𝜏 ∑
𝒌,𝒌′,𝑎
𝛼†𝒌,𝑎𝑉

−1
𝒌,𝒌′;𝑎𝛼𝒌′,𝑎]. (C.29)

Adding this to the original partition function we obtain

𝑍 = ∫D[𝑐†, 𝑐]D[𝛼†, 𝛼] 𝑒−𝑆,

𝑆 = ∫
𝛽

0
𝑑𝜏[∑
𝒌
𝑐†𝒌(𝜕𝜏 + ⃗𝜖𝒌 ⋅ ⃗𝛾)𝑐𝒌 + ∑

𝒌,𝒌′,𝑎
(−𝐴†𝒌,𝑎𝑉𝒌,𝒌′;𝑎𝐴𝒌′,𝑎 + 𝛼

†
𝒌,𝑎𝑉−1𝒌,𝒌′;𝑎𝛼𝒌′,𝑎)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐻𝐼

].
(C.30)
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We now introduce paring fields in terms of the fluctuating field Δ𝒌,𝑎 = 𝛼𝒌,𝑎 − ∑𝒌′ 𝑉𝒌,𝒌′;𝑎𝐴𝒌′,𝑎 such that

𝐻𝐼 = ∑
𝒌,𝒌′,𝑎
(−𝐴†𝒌,𝑎𝑉𝒌,𝒌′;𝑎𝐴𝒌′,𝑎 + 𝛼

†
𝒌,𝑎𝑉
−1
𝒌,𝒌′;𝑎𝛼𝒌′,𝑎)

= ∑
𝒌,𝒌′,𝑎
[−𝐴†𝒌,𝑎𝑉𝒌,𝒌′;𝑎𝐴𝒌′,𝑎 + (Δ

†
𝒌,𝑎 + ∑
𝒌″,𝑎
𝐴†𝒌″,𝑎𝑉𝒌″,𝒌;𝑎)𝑉

−1
𝒌,𝒌′;𝑎(Δ𝒌′,𝑎 + ∑

𝒌‴,𝑎
𝑉𝒌′,𝒌‴;𝑎𝐴𝒌‴,𝑎)]

= ∑
𝒌,𝑎
(𝐴†𝒌,𝑎Δ𝒌,𝑎 + Δ

†
𝒌,𝑎𝐴𝒌,𝑎 + Δ

†
𝒌,𝑎𝑉
−1
𝒌,𝒌′;𝑎Δ𝒌′,𝑎).

(C.31)

After this transformation we can write the partition function and the action in terms of the pairing field with
the BdG-Hamiltonian ℎ𝒌[Δ†, Δ]

𝑍 = ∫D[𝑐†, 𝑐]D[Δ†, Δ] 𝑒−𝑆,

𝑆 = ∫
𝛽

0
𝑑𝜏[∑
𝒌
𝑐†𝒌(𝜕𝜏 + ℎ𝒌[Δ

†, Δ])𝑐𝒌 + ∑
𝒌,𝒌′,𝑎
Δ†𝒌,𝑎𝑉

−1
𝒌,𝒌′;𝑎Δ𝒌′,𝑎].

(C.32)

In the following we will denote the sum over the basis matrices by a trace

∑
𝒌,𝒌′,𝑎
Δ†𝒌,𝑎𝑉

−1
𝒌,𝒌′;𝑎Δ𝒌′,𝑎 = ∑

𝒌,𝒌′
Tr[Δ†𝒌𝑉

−1
𝒌,𝒌′Δ𝒌′ ] (C.33)

The first term in the action is explicitly quadratic and therefore represents a Gaussian integral which can be
integrated trivially by the rules of path integrals, which are outlined in detail in [253]

𝑍 = ∫D[Δ†, Δ] ∫
𝛽

0
𝑑𝜏∏
𝒌
det(𝜕𝜏 + ℎ𝒌[Δ†, Δ]) exp[−∫

𝛽

0
𝑑𝜏 ∑
𝒌,𝒌′

Tr[Δ†𝒌𝑉
−1
𝒌,𝒌′Δ𝒌′ ]]. (C.34)

Writing the determinant back into the exponent we obtain the partition function with the effective action 𝑆eff
of the field Δ

𝑍 = ∫D[Δ†, Δ]𝑒−𝑆eff = ∫D[Δ†, Δ] exp{∫
𝛽

0
𝑑𝜏[∑
𝒌
Tr ln(𝜕𝜏 + ℎ𝒌[Δ†, Δ]) − ∑

𝒌,𝒌′
Tr[Δ†𝒌𝑉

−1
𝒌,𝒌′Δ𝒌′ ]]}. (C.35)

The next step is to perform the mean-field approximation. We assume that the chief contribution to the
path integral originates from the configuration Δ(0)𝒌 which is static in 𝜏 and minimizes the free energy. That
is to say, that the value of the integral is simply the integrand evaluated at this configuration. For brevity we
immediately drop the index (0). In mean-field approximation the partition function is given by

𝑍MF = exp{∫
𝛽

0
𝑑𝜏[∑
𝒌
Tr ln(𝜕𝜏 + ℎ𝒌[Δ†, Δ]) − ∑

𝒌,𝒌′
Tr[Δ†𝒌𝑉

−1
𝒌,𝒌′Δ𝒌′ ]]}. (C.36)

Next we transform the integral from the imaginary time domain to the Matsubara frequency domain. The
Matsubara frequencies are discrete, hence the integral transforms into a sum. Remember that we have assumed
the Δ is independent of 𝜏. We get

𝑍MF = exp[ ∑
𝒌,𝑖𝜔𝑛

Tr ln(ℎ𝒌[Δ†, Δ] − 𝑖𝜔𝑛) − 𝛽 ∑
𝒌,𝒌′

Tr[Δ†𝒌𝑉
−1
𝒌,𝒌′Δ𝒌′ ]]. (C.37)

Then using identity Tr ln = ln det we can unravel part of the exponential function

𝑍MF = ∏
𝒌,𝑖𝜔𝑛

det(ℎ𝒌[Δ†, Δ] − 𝑖𝜔𝑛) exp[−𝛽 ∑
𝒌,𝒌′

Tr[Δ†𝒌𝑉
−1
𝒌,𝒌′Δ𝒌′ ]]. (C.38)
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At this point we can use the partition function to compute the free energy using its definition

𝐹MF = −
1
𝛽
ln𝑍MF = −

1
𝛽
ln{∏
𝒌,𝑖𝜔𝑛

det(ℎ𝒌[Δ†, Δ] − 𝑖𝜔𝑛) exp[−𝛽 ∑
𝒌,𝒌′

Tr[Δ†𝒌𝑉
−1
𝒌,𝒌′Δ𝒌′ ]]}

= − 1
𝛽
∑
𝒌,𝑖𝜔𝑛

ln(det(ℎ𝒌[Δ†, Δ] − 𝑖𝜔𝑛)) + ∑
𝒌,𝒌′

Tr[Δ†𝒌𝑉
−1
𝒌,𝒌′Δ𝒌′ ].

(C.39)

Taking the determinant of the BdG-Hamiltonian is equivalent to forming the product of all eigenvalues, so the
determinant evaluates to

det(ℎ𝒌[Δ†, Δ] − 𝑖𝜔𝑛) = ∏
𝜈
(𝐸𝒌,𝜈 − 𝑖𝜔𝑛) (C.40)

with the eigenvalues 𝐸𝒌,𝜈 of the BdG-Hamiltonian ℎ𝒌[Δ†, Δ]. Plugging this back into the free energy and
rearranging

𝐹MF = −
1
𝛽
∑
𝒌,𝑖𝜔𝑛

ln[∏
𝜈
(𝐸𝒌,𝜈 − 𝑖𝜔𝑛)] + ∑

𝒌,𝒌′
Tr[Δ†𝒌𝑉

−1
𝒌,𝒌′Δ𝒌′ ] (C.41)

= − 1
𝛽
∑
𝒌,𝑖𝜔𝑛,𝜈

ln[(𝐸𝒌,𝜈 − 𝑖𝜔𝑛)] + ∑
𝒌,𝒌′

Tr[Δ†𝒌𝑉
−1
𝒌,𝒌′Δ𝒌′ ] (C.42)

= − 1
𝛽
∑
𝒌,𝑖𝜔𝑛,𝜈

ln(𝐸𝒌,𝜈 − 𝑖𝜔𝑛) + ∑
𝒌,𝒌′

Tr[Δ†𝒌𝑉
−1
𝒌,𝒌′Δ𝒌′ ]. (C.43)

In fact, we can evaluate the Matsubara sum, because the first term simply represents the free energy of free
fermions, for which the contour integral can be evaluated easily, see Appendix C. As a reminder:

1
𝛽
∑
𝑖𝜔𝑛

ln(𝐸𝒌 − 𝑖𝜔𝑛) =
1
𝛽
ln(1 + 𝑒−𝛽𝐸𝒌 ). (C.44)

With that result the mean-field free energy takes on a compact form

𝐹MF = −
1
𝛽
∑
𝒌,𝜈

ln(1 + 𝑒−𝛽𝐸𝒌,𝜈 ) + ∑
𝒌,𝒌′

Tr[Δ†𝒌𝑉
−1
𝒌,𝒌′Δ𝒌′ ]. (C.45)

However, we can simplify this result further, because of particle-hole symmetry which guarantees that there are
always two eigenvalues with opposite sign. This property is also called Nambu doubling. We can hence split up
the sum over 𝜈 into a single sum over 𝑛 which only runs over the positive part of the spectrum. Applying some
simplifications we then have the mean-field free energy

𝐹MF = −∑
𝒌,𝑛
[𝐸𝒌,𝑛 +

2
𝛽
ln(1 + 𝑒−𝛽𝐸𝒌,𝑛 )] + ∑

𝒌,𝒌′
Tr[Δ†𝒌𝑉

−1
𝒌,𝒌′Δ𝒌′ ]. (C.46)

This is sometimes also written as

𝐹MF = −
1
𝛽
∑
𝒌,𝑛

ln[2 cosh(
𝛽𝐸𝒌,𝑛
2
)] + ∑
𝒌,𝒌′

Tr[Δ†𝒌𝑉
−1
𝒌,𝒌′Δ𝒌′ ]. (C.47)

This free energy has to be evaluated numerically in general because the functional form of 𝐸𝒌,𝑛 might not be
known and the sum is not computable.
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Appendix D

Ginzburg-Landau free energy

An alternative approach to analyze the free energy just below the critical temperature is to expand it in powers
of the pairing potential to obtain the Ginzburg-Landau form. Let’s go back to the effective action (C.35)

𝑍 = ∫D[Δ†, Δ] exp{∫
𝛽

0
𝑑𝜏[∑
𝒌
Tr ln(𝜕𝜏 + ℎ𝒌[Δ†, Δ]) − ∑

𝒌,𝒌′
Tr[Δ†𝒌𝑉

−1
𝒌,𝒌′Δ𝒌′ ]]}. (D.1)

This time we will not evaluate the first term directly but rather identify the full propagator of the system as
G−1 = (𝜕𝜏 + ℎ𝒌[Δ†, Δ]).

𝑍 = ∫D[Δ†, Δ] exp{∫
𝛽

0
𝑑𝜏[Tr lnG−1(𝜏) − ∑

𝒌,𝒌′
Tr[Δ†𝒌𝑉

−1
𝒌,𝒌′Δ𝒌′ ]]}. (D.2)

Again we determine the free energy from the partition function, analogous to the previous calculation. This
time the free energy in mean-field approximation reads

𝐹MF = −
1
𝛽
∫
𝛽

0
𝑑𝜏[Tr lnG−1(𝜏) + ∑

𝒌,𝒌′
Tr[Δ†𝒌𝑉

−1
𝒌,𝒌′Δ𝒌′ ]]. (D.3)

Now we assume the pairing to be a perturbation to the normal state, so that ℎ𝒌[Δ†, Δ]) = 𝐻0 + Σ, where Σ is
the pairing. The Green’s function of the normal state is 𝐺−10 = (𝜕𝜏 −𝐻0) and therefore G−1 = 𝐺−10 − Σ. Then we
can apply some logarithm identities

lnG−1 = ln(𝐺−10 − Σ) = ln[𝐺−10 (1 − 𝐺0Σ)] = ln𝐺−10 + ln(1 − 𝐺0Σ) (D.4)

and expand the matrix logarithm analogous to the scalar logarithm

ln(1 + 𝑥) =
∞

∑
𝑛=1
(−1)𝑛+1 𝑥

𝑛

𝑛
≈ 𝑥 − 𝑥

2

2
+ 𝑥
3

3
− 𝑥
4

4
+⋯ . (D.5)

Therefore we find

ln(1 − 𝐺0Σ) ≈ −𝐺0Σ −
1
2
𝐺0Σ𝐺0Σ −

1
3
𝐺0Σ𝐺0Σ𝐺0Σ −

1
4
𝐺0Σ𝐺0Σ𝐺0Σ𝐺0Σ. (D.6)

Remember that 𝐺0 was block diagonal and Σ was block off-diagonal, i.e.

𝐺0 = (
𝐺(𝒌, 𝑖𝜔𝑛) 0
0 �̃�(𝒌, 𝑖𝜔𝑛)

) and Σ = (
0 Δ𝒌
Δ†𝒌 0

) . (D.7)

Some simple matrix algebra confirms that all the odd orders in the free energy will vanish. With this at hand
we can write the free energy as

𝐹GL ≡ 𝐹MF − 𝐹0 =
1
𝛽
∫
𝛽

0
𝑑𝜏 {∑
𝒌,𝒌′

Tr[Δ†𝒌𝑉
−1
𝒌,𝒌′Δ𝒌′ ] + ∑

𝒌

∞

∑
𝑛=1

1
𝑛
Tr[(Δ𝒌�̃�(𝒌, 𝜏)Δ

†
𝒌𝐺(𝒌, 𝜏))

𝑛]}, (D.8)
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or after Matsubara transformation

𝐹GL = ∑
𝒌,𝒌′

Tr[Δ†𝒌𝑉
−1
𝒌,𝒌′Δ𝒌′ ] +

1
𝛽
∑
𝒌

∞

∑
𝑛=1

1
𝑛
Tr[(Δ𝒌�̃�(𝒌, 𝑖𝜔𝑛)Δ

†
𝒌𝐺(𝒌, 𝑖𝜔𝑛))

𝑛]. (D.9)

In the previous Appendix we have derived the form of the Ginzburg-Landau free energy in (D.9). The
second-order term which is quadratic in Δ𝒌 (𝑛 = 1) and the fourth-order term which is quartic in Δ𝒌 are
important for the description of phase transitions. The second-order determines the leading instability, whereas
the fourth-order term selects the ground state from the leading manifold.

For the even-parity two-band superconductor in Chapter 3 we can compute the traces in the second term
for 𝑛 = 1 and 𝑛 = 2 using the notation of the pairing potential in the pseudospin basis. The traces have a simple
form

Tr[Δ𝒌�̃�(𝒌, 𝜔)Δ
†
𝒌𝐺(𝒌, 𝜔)] = 2(|𝜓𝒌,𝐼|

2 + |𝒅𝒌|2)(�̃�+𝐺− + �̃�−𝐺+) + 2|𝜓𝒌,+|2�̃�+𝐺+ + 2|𝜓𝒌,−|2�̃�−𝐺−, (D.10)
1
2
Tr[(Δ𝒌�̃�(𝒌, 𝜔)Δ

†
𝒌𝐺(𝒌, 𝜔))

2]

= (2(|𝜓𝒌,𝐼|2 + |𝒅𝒌|2)
2 − |𝜓2𝒌,𝐼 + 𝒅𝒌 ⋅ 𝒅𝒌|2)(�̃�2−𝐺2+ + �̃�2+𝐺2−)

+ (|𝜓𝒌,𝐼|2 + |𝒅𝒌|2)(2|𝜓𝒌,+|2�̃�+𝐺+ + 2|𝜓𝒌,−|2�̃�−𝐺−)(�̃�+𝐺− + �̃�−𝐺+)

+ 4Re[𝜓∗𝒌,+𝜓∗𝒌,−(𝜓2𝒌,𝐼 + 𝒅𝒌 ⋅ 𝒅𝒌)]�̃�+�̃�−𝐺+𝐺− + |𝜓𝒌,+|4�̃�2+𝐺2+ + |𝜓𝒌,−|4�̃�2−𝐺2−

= 1
4
(Tr[Δ𝒌�̃�(𝒌, 𝜔)Δ

†
𝒌𝐺(𝒌, 𝜔)])

2
+ ((|𝜓𝒌,𝐼|2 + |𝒅𝒌|2)

2 − |𝜓2𝒌,𝐼 + 𝒅𝒌 ⋅ 𝒅𝒌|2)(�̃�2−𝐺2+ + �̃�2+𝐺2−)

+ (4Re[𝜓∗𝒌,+𝜓∗𝒌,−(𝜓2𝒌,𝐼 + 𝒅𝒌 ⋅ 𝒅𝒌)] − 2(|𝜓𝒌,𝐼|2 + |𝒅𝒌|2)
2 − 2|𝜓𝒌,+𝜓𝒌,−|2)�̃�+�̃�−𝐺+𝐺−, (D.11)

with the particle-like and hole-like single-band Green’s functions 𝐺± = (𝑖𝜔 − 𝜖±)−1 and �̃�± = (𝑖𝜔 + 𝜖±)−1,
respectively. The real part is an abbreviation for

2Re[𝜓∗𝒌,+𝜓∗𝒌,−(𝜓2𝒌,𝐼 + 𝒅𝒌 ⋅ 𝒅𝒌)] = |𝜓𝒌,+𝜓𝒌,− + 𝜓2𝒌,𝐼 + 𝒅𝒌 ⋅ 𝒅𝒌|2 − |𝜓𝒌,+𝜓𝒌,−|2 − |𝜓2𝒌,𝐼 + 𝒅𝒌 ⋅ 𝒅𝒌|2. (D.12)

As we have seen previously, the expressions for the intraband paring potential 𝜓𝒌,±, and the interband pairing
potentials 𝜓𝒌,𝐼 and 𝒅𝒌 depend on the choice of the pseudospin basis and turn out to be rather unwieldy. Luckily
certain combinations have a form that does not depend on this choice which allows us to relate the pairing
potentials in the pseudospin basis to their counterparts in the orbital basis. We have taken care to express the
second- and fourth-order term above only using these “basis-agnostic” quantities, which are for completeness

𝜓𝒌,± = 𝜂𝒌,0 ±
⃗𝜖𝒌 ⋅ ⃗𝜂𝒌
| ⃗𝜖𝒌|
, (D.13)

|𝜓𝒌,𝐼|2 + |𝒅𝒌|2 = | ⃗𝜂𝒌|2 −
| ⃗𝜖𝒌 ⋅ ⃗𝜂𝒌|2

| ⃗𝜖𝒌|2
, (D.14)

𝜓2𝒌,𝐼 + 𝒅𝒌 ⋅ 𝒅𝒌 = ⃗𝜂𝒌 ⋅ ⃗𝜂𝒌 −
( ⃗𝜖𝒌 ⋅ ⃗𝜂𝒌)2

| ⃗𝜖𝒌|2
. (D.15)

Evaluation of the Ginzburg-Landau free energy

For the investigation of the time-reversal symmetry-breaking phase transition we will evaluate the fourth-order
coefficient of the Ginzburg-Landau free energy, i.e. the momentum and frequency summations over (D.11).
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First we perform a change of variables from momentum to energy for which it is convenient to write the two
normal-state energy eigenvalues as

𝜖± = (1 ±
𝑓(𝜃, 𝜙)
𝛼 + 5𝛽/4

)𝜖0 ±
𝑓(𝜃, 𝜙)
𝛼 + 5𝛽/4

𝜇 (D.16)

where 𝜖0 = (𝛼 + 5𝛽/4)𝑘2 and 𝑓(𝜃, 𝜙) = [∑𝑖(𝛽
2�̂�4𝑖 + (3𝛾2 − 𝛽2)�̂�2𝑖 �̂�2𝑖+1)]

1/2. In the spherical limit 𝛽 = 𝛾 there
is no cubic anisotropy and the term reduces to 𝑓(𝜃, 𝜙) = 𝛽 which is angle independent. In this case we can
introduce a renormalized spin-orbit coupling ̃𝛽 = 𝛽/(𝛼 + 5𝛽/4)

𝜖± = (1 ±
𝛽
𝛼 + 5𝛽/4

)𝜖0 ±
𝛽
𝛼 + 5𝛽/4

𝜇 ≡ (1 ± ̃𝛽)𝜖0 ± ̃𝛽𝜇. (D.17)

Because the pairing is momentum-independent, the coefficients of the Green’s functions in (D.11) will only
depend on the angular part of themomentum, whereas the Green’s functions will only depend on themagnitude
of the momentum. With the above parameterization we can then rewrite the sum over 𝒌 as an integral over 𝜖0

∑
𝒌,𝜔
→ ∫
𝕊2
𝑑Ω∑
𝜔
∫
∞

−∞
𝑑𝜖0𝐷(𝜖0), (D.18)

with the density of states

𝐷(𝜖0) =
√𝜖0 + 𝜇
2(𝛼 + 5𝛽/4)3/2

. (D.19)

Generally the assumption of constant density of states at the Fermi surface is taken, i.e. 𝐷(𝜖0) ≈ 𝐷(0). That
completely neglects any particle-hole asymmetry of the normal state. The density of states cannot be treated in
full, but it can be expanded. In the results shown in Figs. 4.2 and 4.3, we expanded the density of states up to
first order

𝐷(𝜖0) ≈
√𝜇

2(𝛼 + 5𝛽/4)3/2
(1 + 𝜖0
2𝜇
) . (D.20)

Without the first-order correction to the density of states, the integrals evaluate to

𝑘𝐵𝑇∑
𝑖𝜔𝑛

∫
∞

−∞
𝑑𝜖0(�̃�2−𝐺2+ + �̃�2+𝐺2−) =

2
16𝜋2(𝑘𝐵𝑇)2

( ̃𝛽2 − 1)Re[𝜓(2) (1
2
− 𝑖𝜇
̃𝛽

2𝑘𝐵𝑇𝜋
)] , (D.21)

𝑘𝐵𝑇∑
𝑖𝜔𝑛

∫
∞

−∞
𝑑𝜖0(�̃�+�̃�−𝐺+𝐺−) =

1
4𝜇2 ̃𝛽2
(2Re [𝐻

− 12−
𝑖𝜇 ̃𝛽
2𝑘𝐵𝑇𝜋
] + log(16)) , (D.22)

𝑘𝐵𝑇∑
𝑖𝜔𝑛

∫
∞

−∞
𝑑𝜖0(�̃�−�̃�−𝐺−𝐺+ + �̃�−�̃�+𝐺−𝐺−) = −

1
8𝜋𝑘𝐵𝑇𝜇2 ̃𝛽

(4𝜋𝑘𝐵𝑇Re[𝜓(0) (
1
2
− 𝑖𝜇
̃𝛽

2𝑘𝐵𝑇𝜋
)]

− 2𝜇 ( ̃𝛽 + 1) Im[𝜓(1) (1
2
− 𝑖𝜇
̃𝛽

2𝑘𝐵𝑇𝜋
)] + 4𝜋𝑘𝐵𝑇(𝛾 + log(4))), (D.23)

𝑘𝐵𝑇∑
𝑖𝜔𝑛

∫
∞

−∞
𝑑𝜖0(�̃�+�̃�+𝐺−𝐺+ + �̃�+�̃�−𝐺+𝐺+) =

1
8𝜋𝑘𝐵𝑇𝜇2 ̃𝛽

(4𝜋𝑘𝐵𝑇Re[𝜓(0) (
1
2
− 𝑖𝜇
̃𝛽

2𝑘𝐵𝑇𝜋
)]

− 2𝜇 ( ̃𝛽 − 1) Im[𝜓(1) (1
2
− 𝑖𝜇
̃𝛽

2𝑘𝐵𝑇𝜋
)] + 4𝜋𝑘𝐵𝑇(𝛾 + log(4))), (D.24)

𝑘𝐵𝑇∑
𝑖𝜔𝑛

∫
∞

−∞
𝑑𝜖0(�̃�2+𝐺2+ + �̃�2−𝐺2−) = −

7𝜁(3)
4𝜋2(𝑘𝐵𝑇)2 ( ̃𝛽2 − 1)

. (D.25)
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Taking into account the correction term, the integrals evaluate to

𝑘𝐵𝑇∑
𝑖𝜔𝑛

∫
∞

−∞
𝑑𝜖0 (1 +

𝜖0
2𝜇
) (�̃�2−𝐺2+ + �̃�2+𝐺2−) =

1
16𝜋2(𝑘𝐵𝑇)2𝜇

(−4𝜋𝑘𝐵𝑇 ̃𝛽 Im[𝜓(1) (
1
2
− 𝑖𝜇
̃𝛽

2𝑘𝐵𝑇𝜋
)]

+ 2𝜇 ( ̃𝛽2 − 1)Re[𝜓(2) (1
2
− 𝑖𝜇
̃𝛽

2𝑘𝐵𝑇𝜋
)]), (D.26)

𝑘𝐵𝑇∑
𝑖𝜔𝑛

∫
∞

−∞
𝑑𝜖0 (1 +

𝜖0
2𝜇
) (�̃�+�̃�−𝐺+𝐺−) =

1
4𝜇2 ̃𝛽2
(2Re [𝐻

− 12−
𝑖𝜇 ̃𝛽
2𝑘𝐵𝑇𝜋
] + log(16)), (D.27)

𝑘𝐵𝑇∑
𝑖𝜔𝑛

∫
∞

−∞
𝑑𝜖0 (1 +

𝜖0
2𝜇
) (�̃�−�̃�−𝐺−𝐺+ + �̃�−�̃�+𝐺−𝐺−) = −

1
8𝜋𝑘𝐵𝑇𝜇2 ̃𝛽

(2𝜋𝑘𝐵𝑇Re[𝜓(0) (
1
2
− 𝑖𝜇
̃𝛽

2𝑘𝐵𝑇𝜋
)]

− 2𝜇 ( ̃𝛽 + 1) Im[𝜓(1) (1
2
− 𝑖𝜇
̃𝛽

2𝑘𝐵𝑇𝜋
)] + 2𝜋𝑘𝐵𝑇(𝛾 + log(4))), (D.28)

𝑘𝐵𝑇∑
𝑖𝜔𝑛

∫
∞

−∞
𝑑𝜖0 (1 +

𝜖0
2𝜇
) (�̃�+�̃�+𝐺−𝐺+ + �̃�+�̃�−𝐺+𝐺+) = −

1
8𝜋𝑘𝐵𝑇𝜇2 ̃𝛽

(−2𝜋𝑘𝐵𝑇Re[𝜓(0) (
1
2
− 𝑖𝜇
̃𝛽

2𝑘𝐵𝑇𝜋
)]

+ 2𝜇 ( ̃𝛽 − 1) Im[𝜓(1) (1
2
− 𝑖𝜇
̃𝛽

2𝑘𝐵𝑇𝜋
)] − 2𝜋𝑘𝐵𝑇(𝛾 + log(4))), (D.29)

𝑘𝐵𝑇∑
𝑖𝜔𝑛

∫
∞

−∞
𝑑𝜖0 (1 +

𝜖0
2𝜇
) (�̃�2+𝐺2+ + �̃�2−𝐺2−) =

7𝜁(3)

4𝜋2(𝑘𝐵𝑇)2 ( ̃𝛽2 − 1)
2 . (D.30)

The form of the prefactors of these terms depends on the pairing state. A generic form of these coefficients is
already given in (D.11). In the spherical limit all the time-reversal symmetric states are degenerate. The same
holds for the time-reversal symmetry-breaking states.
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Appendix E

Spin susceptibility and Knight shift

In metals, the Knight shift is proportional to the paramagnetic susceptibility of the material. In superconductors,
the Knight shift is in fact the only reliable probe of the bulk susceptibility because diamagnetic shielding by
supercurrent will shadow all other contributions [254].

The conduction electrons of a metal are susceptible to external magnetic fields. At the same time, their
coupling to the nuclear spins of the atoms is very weak. This can be exploited to probe the magnetic response
of a material with good sensitivity using nuclear magnetic resonance (NMR) techniques. The induced field
will oppose the applied field as per Lenz’s law which will shift the magnetic resonance away from the Larmor
frequency. This is known as the Knight shift.

To calculate the spin susceptibility we start from the interaction of the electron magnetic moment with an
applied ac magnetic field as such

𝑉(𝑡) = −𝒎 ⋅ 𝑯𝑒−𝑖𝜔𝑡, (E.1)

𝒎 = 𝑔𝜇0∑
𝑖
𝑺𝑖, (E.2)

where𝑉(𝑡) denotes the time-dependent interaction and𝒎 is the magnetic moment associated with the electron
spin 𝑺.

We may now calculate the physical magnetization in linear response by computing the expectation value of
the electronmagnetic moment in the interaction picture by expanding the 𝑆matrix to first-order of perturbation
theory. This yields

𝑀𝛼(𝑡) = ⟨𝑚𝛼(𝑡)⟩𝑡 ≈ −𝑖 ∫
𝑡

−∞
⟨[𝑚𝛼(𝑡), 𝑉(𝑡′)]⟩ 𝑑𝑡′. (E.3)

It is convenient to switch to imaginary time, such that we can evaluate the expectation value in Matsubara space

𝑀𝛼(𝑖𝜔) = ∫
𝜏

0
𝑒𝑖𝜔𝜏⟨𝑇𝜏𝑚𝛼(𝜏)𝑚𝛽(0)⟩𝐻𝛽 𝑑𝜏. (E.4)

At this point we identify the dynamical susceptibility which is usually written momentum-resolved

𝜒𝛼𝛽(𝒒, 𝑖𝜔) ≡ ∫
𝜏

0
𝑒𝑖𝜔𝜏⟨𝑇𝜏𝑚𝛼(𝒒, 𝜏)𝑚𝛽(−𝒒, 0)⟩ 𝑑𝜏 (E.5)

where
𝑚𝛼(𝒒, 𝜏) ∝ ∑

𝑖
𝑆𝑖(𝜏) =

1
𝑁
∑
𝒌,𝒒,𝑎,𝑏
𝑑†𝑎(𝒌 + 𝒒, 𝜏)𝜎𝛼𝑎𝑏𝑑𝑏(𝒌, 𝜏). (E.6)

Plugging in the magnetic moment as defined above we find an expression for the spin-, momentum-, and
frequency-resolved magnetic susceptibility

𝜒𝛼𝛽(𝒒, 𝑖𝜔) =
1
𝑁2
∑
𝒌,𝒌′,𝑎,𝑏
∫
𝜏

0
𝑒𝑖𝜔𝜏𝜎𝛼𝑎𝑏𝜎

𝛽
𝑐𝑑⟨𝑇𝜏𝑑

†
𝑎(𝒌 + 𝒒, 𝜏)𝑑𝑏(𝒌, 𝜏)𝑑†𝑐 (𝒌′ − 𝒒, 0)𝑑𝑑(𝒌′, 0)⟩ 𝑑𝜏. (E.7)
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This expression is completely general and agnostic to the microscopic details of the model, which enter in the
evaluation of the expectation value. To evaluate this expectation value we apply Wick’s theorem, but since we are
dealing with a superconductor we have to be wary of anomalous averages which usually vanish in the metallic
case. In the case of a single-band singlet superconductor without spin-orbit coupling, the spin directions are all
equivalent and we can therefore drop the spin indices

𝜒(𝒒, 𝑖𝜔) = 1
𝑁2
∑
𝒌,𝒌′
∫
𝜏

0
𝑒𝑖𝜔𝜏⟨𝑇𝜏𝑑†(𝒌 + 𝒒, 𝜏)𝑑(𝒌, 𝜏)𝑑†(𝒌′ − 𝒒, 0)𝑑(𝒌′, 0)⟩ 𝑑𝜏. (E.8)

We rearrange the terms and apply Wick’s theorem to decompose the expectation value and identify the def-
inition of the Green’s functions 𝐺(𝒌, 𝜏) = ⟨𝑇𝜏𝑑(𝒌, 𝜏)𝑑†(𝒌, 0)⟩ and the anomalous Green’s functions 𝐹(𝒌, 𝜏) =
⟨𝑇𝜏𝑑(𝒌, 𝜏)𝑑(−𝒌, 0)⟩. Fourier transforming the result into Matsubara space we find

𝜒 = − 1
𝑁𝛽
∑
𝒌,𝑖𝜔𝑛

(𝐺(𝒌, 𝑖𝜔𝑛)𝐺(𝒌 + 𝒒, 𝑖𝜔𝑛 − 𝑖𝜔) − 𝐹(𝒌, 𝑖𝜔𝑛)𝐹∗(𝒌 + 𝒒, 𝑖𝜔𝑛 − 𝑖𝜔)). (E.9)

Further we can determine the normal and anomalous Green’s functions by solving the Gor’kov equations,
assuming that 𝜖𝒌 = 𝜖−𝒌 and abbreviating 𝑖𝜔𝑛 = 𝑖𝜔. Because everything is scalar, solving these equations is
straightforward and we find the following textbook solution [253]

𝐺(𝒌, 𝑖𝜔) =
1
2 (1 +

𝜖𝒌
𝐸𝒌
)

𝑖𝜔 − 𝐸𝒌
+
1
2 (1 −

𝜖𝒌
𝐸𝒌
)

𝑖𝜔 + 𝐸𝒌
, (E.10)

𝐹(𝒌, 𝑖𝜔) = −
Δ
2𝐸𝒌
𝑖𝜔 − 𝐸𝒌

+
Δ
2𝐸𝒌
𝑖𝜔 + 𝐸𝒌
. (E.11)

It is now possible to evaluate the Matsubara frequency summation. The summations in the present case are
well-known and usually tabulated.

To relate the susceptibility to the Knight shift, we assume an external magnetic field and therefore the
momentum transfer is 𝒒 = 0. We also neglect the frequency dependence, i.e. we assume the static limit 𝜔 → 0.
With this we have the spin susceptibility in the static limit which corresponds to the Knight shift due to an
external magnetic field. We can perform a final transformation from the momentum space summation to
integration over energies where𝐷0(𝐸) denotes the density of states in the normal-state

𝜒(𝒒 = 0, 𝑖𝜔 = 0) = 1
4𝑁
∑
𝒌
sech2( 𝐸𝒌
2𝑘𝑇
) (E.12)

= 1
4
1
(2𝜋)3
∫
ℝ3
𝑑3𝑘 sech2( 𝐸𝒌

2𝑘𝑇
) (E.13)

= 1
4
∫
∞

−∞
𝑑𝜖𝒌 𝐷0(𝜖𝒌) sech2(

𝐸𝒌
2𝑘𝑇
) (E.14)

≈ 𝐷0(0)
4
∫
∞

−∞
𝑑𝜖𝒌 sech2(

𝐸𝒌
2𝑘𝑇
). (E.15)

This result is familiar from Yosida [199]. The Yosida function 𝑌(𝑇) is usually defined as

𝑌(𝑇) = 1
4
∫
∞

−∞
𝑑𝜖𝒌 sech2(

𝐸𝒌
2𝑘𝑇
). (E.16)
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